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Introduction

aiSee is a tool that automatically calculates a customizable layout of graphs specified in GDL
(Graph Description Language). This layout is then displayed, and can be interactively explored,
printed, and exported to various formats.

aiSee reads a textual and human-readable graph specification and visualizes the graph. Its design
has been optimized to handle large graphs automatically generated by applications (e. g. compil-

ers).

aiSee was developed to visualize the internal data structures typically found in compilers. Today
it is widely used in many different areas:

Genealogy (family trees, evolution diagrams, pedigrees)
Business management (organization charts, process diagrams)

Bioinformatics (gene expression graphs, metabolic and signaling pathways, consensus ge-
netic maps, protein interaction maps, shared GeneOntology annotations, literature co-citation
relations)

Software development (call graphs, control flow graphs, validation of hardware traces)
Hardware design (circuit diagrams, finite state diagrams)

Database management (entity relationship diagrams)

Informatics (finite state automata, algorithm visualization)

Web design and Web site optimization (sitemaps, visitor movement graphs)

Network analysis (P2P networks, IRC networks, social networks, the Internet)
Linguistics (syntax trees, grammar graphs, term variant graphs)

Criminology (fraud networks, felony event flow diagrams)

There are many applications that offer GDL interfaces. Some of them are freely available on the
Internet. Visit www.aisee.com/apps for further information.






2 Overview

The Usage section contains the basics the user needs to know for using aiSee. Upon completing it
the user is able to do the following:

e Navigate through graphs

e Scale them

e Access additional information associated with nodes
e Print graphs

The Advanced Usage section describes subgraphs, regions of nodes, and User Actions. Subgraphs
and regions are used to structure graphs, thereby facilitating interactive exploration of a graph.
User Actions are used for communication with other applications.

The GDL section is written for programmers who want to produce graph specifications from their
application program which can then be visualized using aiSee.

The Overview of the Layout Phases section provides an introduction to the internals of aiSee and
the underlying graph layout algorithms.






3 Usage

This chapter describes the basics of using aiSee.

3.1 Starting aiSee

Under Windows, aiSee can be invoked either from the command line in a window running the MS-
DOS command interpreter or like any other Windows program, e.g. from the Start->Programs
pop up menu, from the Start—> Run menu, or by double-clicking on the aiSee program icon.

Under Linux, aiSee can be invoked either from the command line, or by (double-)clicking on its
icon in a graphical file browser.

3.1.1 Calling aiSee from the Command Line

aiSee can be called without any graph specifications, with a single specification or with a list of
specifications.

aisee3 [options] [filename]

For the available command line options, see p. 23.

3.2 Exiting aiSee

aiSee is quit by pressing Ctrl + W on the keyboard or by choosing Close in the File menu. If
you have several aiSee windows open, this will only close the currently active window. To close
all aiSee windows at once, use Ctrl + Q or choose Quit in the File menu.

11
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3.3 aiSee Window
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Figure 3.1: aiSee Window

The aiSee window consists of a title bar, a menu bar, a toolbar, a graph window (with scrollbars,
when needed), and a status line below the graph window where short messages are printed.

3.4 Usage Modes

aiSee offers several main modes for exploring a graph or interacting with it.

e Selection Mode for selecting a node, several nodes, or a graph area
e Scaling Mode for zooming in and out
e Node Information Mode for viewing additional information associated with nodes

e User Actions Mode for communication with other applications
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3.5 Navigating Through a Graph

3.5 Navigating Through a Graph

There are several different ways to navigate through a graph.

3.5.1 Keys

The easiest way to explore a graph is by using the arrow keys. The display window is moved over
the graph a few pixels in the corresponding direction.

For faster scrolling, use PgUp, PgDown, Home and End. Alternatively, you can use the arrow
keys while holding down the Shift key.

The 0 gets you to the graph origin, i.e. it positions the upper left corner of the display window in
the upper left corner of the graph.

3.5.2 Mouse Pointer

In all modes, you can drag-and-drop the graph by using the middle mouse button. When the button
is pressed and held followed by moving the mouse, the graph moves in the same direction as the
mouse until the button is released.

Instead of the middle mouse button, you can also hold down the < or the > key on your keyboard.

3.5.3 Scrollbars (Fine-Tuning)

The vertical and horizontal scrollbars for the graph window are used to scroll the graph window
over the graph. The scrollbars are enabled automatically whenever the scaling factor is such that
the graph does not completely fit into the graph window.

3.5.4 Panning Mode for Exploring Large Graphs

Another method of exploring large graphs is to use the Panning Mode.

This mode allows you to temporarily zoom out so that the entire graph fits the window. The part
of the graph that has been zoomed out of is marked by a highlighted rectangle, while the rest of
the graph is shown dimmed. Dragging the highlighted rectangle using the mouse enables you to
quickly move to a different place in the graph. Left-clicking then allows you to zoom back in.

The Panning Mode is accessible either via the corresponding button in the toolbar or via the small
button in the lower right corner of the graph window.

To quit the Panning Mode, either left-click to zoom into the currently highlighted part of the graph,
or press ESC to return to your original position prior to entering the Panning Mode.

13
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3.5.5 Following Edges

When working with very large graphs where the nodes are connected by long edges it is useful to
navigate through the graph by taking advantage of the graph structure. This is done by following
edges through the graph.

The Follow Edge operation works like this:
1. Select a node and press €. One edge that starts or ends at this node is highlighted.

2. Press Tab or use the mouse wheel to highlight the next edge, until the edge you wish to
follow is highlighted.

3. Press e or right-click to follow the highlighted edge, i.e. to center the node at the other end
of the edge in the graph window.

4. From the new node, another edge can be selected to be followed in the same manner.

Alternatively, you can start the Follow Edge by selecting an edge. Pressing e will then highlight
the node at the end of the edge that is farther away from your current position. You can then
proceed to follow further edges in the manner described above, by using Tab or the mouse wheel
to select an edge and pressing € to follow it.

3.5.6 Show Neighbors

Select a node and press the n key to show all direct neighbors of that node — connected by a
visible, invisible or hidden edge.

Hidden edges are not to be confused with invisible edges. Invisible edges are edges that are present
in the current layout but have their 1inestyle set to invisible in the GDL specification.
Hidden edges are edges that are present in the GDL specification, but not in the current layout.
Edges can be hidden because edge classes can be hidden or because of folded or boxed subgraphs
(see subgraphs on p. 20).

Each neighbor is annotated by an arrow head in order to distinguish outgoing edges from incoming
ones.

Click on a node in the results list to center and mark that node in the main aiSee window. If
the node is inside a folded subgraph, that subgraph will be centered and marked instead (but not
unfolded).

You can also double-click on a node in the results list to list its neighbors.

3.5.7 Searching for Nodes

Press Ctrl + F to open the Find dialog box.

Click on a node in the results list to center and mark that node in the main aiSee window. If
the node is inside a folded subgraph, that subgraph will be centered and marked instead (but not
unfolded).

You can also double-click on a node in the results list to list its neighbors.

14
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3.6 Scaling the Graph

3.6 Scaling the Graph

If not specified otherwise in the graph specification, aiSee starts with an absolute scale factor of
100% (referred to as “normal”). To scale a graph one of the following three methods can be used.

3.6.1 Keys

The easiest way to scale a graph is by using one of the following keys in the graph window:

| Key | Scale factor

+ | 141 % of the current scale factor

— | 70 % of the current scale factor

0" | Sets the scale factor to normal (100%).

m | Maximum aspect: the scale factor is set so that the whole graph is entirely visible.

Another way to scale the graph is by using the zoom bar in the bottom right corner of the window.
(To easily scale to exactly 100displayed to the left of the bar.)

3.7 Markers

Markers allow you to temporarily save your current position over the graph along with the current
scaling factor for quick access later. This is especially useful for jumping between different points
of interest in a huge graph.

Note: markers are lost once you quit aiSee, reload the current graph or load a new one.

e To set a new marker, press . (the period key).

e To see a list of markers that have been set, press F3. The marker list will show up in a
separate window. Here, you can:

— Jump to a marker (i.e., load the position and scaling factor represented by that marker
in the main aiSee window) by double-clicking on it.

— Rename a marker by performing two single left clicks on its name, followed by typing
in a new name.

— Remove a marker from the list by selecting it with a single left click and using the button
Remove.

e To quickly jump between markers, you can also use the dropdown menu in the lower right
corner of the aiSee window.

IThis is the number zero.

15
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3.8 Node Information

Apart from a node label, up to three pieces of additional information, i.e. text can be associated
with a node.

The Node Information Mode enables this information to be accessed.

e To switch to this mode, click on the corresponding icon in the aiSee toolbar or simply select
a node and press i.
e Clicking in an open information window causes it to close again.

e Leaving the Node Information Mode causes all information windows to be temporarily hid-
den but not closed, i.e., once you switch back to the Node Information Mode, the same
information windows will be automatically opened again.

3.9 File Operations

All file operations are supported by a file selector dialog box to select a file name.

The submenu File offers the following file operations:

e Open... (Ctrl + 0)
Opens the file selector box to select a file name. A new graph specification is read from the
file selected, a layout calculated, followed by the graph being displayed. Note: the graph will
be opened in a separate aiSee window.

¢ Reload (g)
This operation causes the file containing the current graph specification to be read again, the
layout recalculated and the graph displayed again. It can also be invoked by pressing the g
key.

e Print...
The Export dialog box is opened.

3.9.1 File Selector Dialog Box

A file selector dialog box appears for all file operations.

To switch to a directory or select a file, double-click on the corresponding entry using the left
mouse button.

16



4 Advanced Usage

4.1 Grouping of graph elements

Graphs consist of nodes and edges. aiSee offers various ways of grouping nodes and edges. Group-
ing is done either statically, i. e. in the graph specification, or dynamically, i. e. interactively. If not
stated otherwise, the operations mentioned in this section are all located in the Folding menu of
the menu line.

4.1.1 Grouping of edges

A group of edges is a set of edges belonging to the same edge class. The user con expose/hide edges
by enabling/disabling edge classes. Edges of enabled edge classes and target nodes are drawn in
the graph window. Edges of disabled edge classes and all nodes accessible via these edges are not
drawn and are not considered in the layout calculation of the graph.

4.1.2 Grouping of nodes

A group of nodes is either

e A subgraph
e A region specified by paths (path region), or

e A region of neighboring nodes (neighbor regions)

A group of nodes can be treated in a special way. It can be:
e Folded into a summary node,
e Shown in a box,

e Shown as a cluster,

Wrapped, or

Represented exclusively.

A summary node is usually drawn in a special shape and/or background color so as to be recognized
as a summary node. It represents all the nodes that are hidden by the folding operation. A summary
node can be:

e unfolded,

e unfolded into a box,

17
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e unfolded and represented as a cluster, or

e unfolded and wrapped.

aiSee 3 so far only supports these operations for subgraphs, but not for regions.

4.1.3 Example

Figure 4.1 shows a nested graph in different grouping and folding stages. This graph consists of
five subgraphs: Graph A to Graph E. Graph B and C are subgraphs of Graph A. Graph E is a
subgraph of Graph D.

1.

All graphs are clustered. In this case it is not possible to choose a different layout for sub-
graphs.

All graphs are boxed. Boxed graphs are drawn in independent frames. Edges between nodes
in different frames are substituted by edges between frames. For example, edge |->M is
represented by the substitute edge Graph C—>M and edge L->Graph E is represented by
substitute edge Graph A—>Graph D.

Note: Different layout algorithms or layout parameters can be chosen within boxes. For
example, graph B is drawn in a force-directed layout, graph C in a tree layout with a top
down orientation and graph E right-left-oriented.

. The frames of graphs B, C, and E are now folded. Nodes inside these frames, i. e. the nodes

of the corresponding subgraphs, disappear.

The frames of graphs A and D are unfolded and the formerly substituted edges are shown.
Edge Graph C—>N is represented by the substitute edge Graph C—>Graph E, since N is a
node of the folded graph E.

. The summary nodes of graphs B, C, and E are unfolded. No frames and summary nodes any

longer exist in this rendering. Therefore edges like Graph E—>N are substituted. Substituted
edges are introduced that start/end at the root node of a frame/subgraph. For example, edge
Graph E->N is now represented by the substitute edge F—>N since F is the root node of
graph C.

Graphs A and D are boxed again, but graphs B, C, and E remain unfolded.

7. Graphs B, C, and E are wrapped. This operation doesn’t change the layout.

18



4.1 Grouping of graph elements

2) All subgraphs boxed 3) Graph B, C and E folded

5) All subgraphs unfolded 6) Graph A and D boxed 7) Graph B, C and E wrapped

Figure 4.1: Several Representations of Groups of Nodes
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4.1.4 Subgraph

A graph can be partitioned into nested subgraphs. Subgraphs can be defined only statically, i.e. in
the graph specification. In the GDL specification, subgraphs should be specified in such a manner
so that the user can identify subgraphs and summary nodes and thus make use of all the operations
that work on subgraphs.

Operations: Subgraphs can be
e Folded into a summary node (f),
e Nested, i.e. unfolded into a box (b or double-click on the subgraph),
e Nested recursively (Shift + b or Shift + double-click).

4.2 Representation of Groups of Nodes

A group of nodes (a subgraph, path region or neighbor region) can be
e Folded into a summary node,

e Presented in a box,

Represented as a cluster,

Wrapped, or

Represented exclusively.

4.2.1 Folding

The nodes belonging to a group are hidden. They are represented by a single node called the
summary node. Summary nodes are usually drawn in a different shape and/or color, so that they
can be recognized and selected for the reverse operation.

Targets
The fold operation can be chosen for a

e Subgraph (menu item Fold Subgraph or press the f key),
e Box (menu item Fold Box).

These operations are accessible from the context menu that appears upon a right-click on a node
or subgraph.

Summary nodes
A summary node represents all the nodes of a group that was folded dynamically, i.e. by a folding
operation, or statically, i.e. in the graph specification. A summary node can be selected and

e Unfolded into a box (b or double-click on the subgraph)
e Unfolded recursively (Shift + b or Shift + double-click)

20
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4.2 Representation of Groups of Nodes

4.2.2 Box

A boxed group of nodes is surrounded by a frame, i.e. drawn in a nested box. The nodes inside
the box are independent of the rest of the graph, i.e. there are no edges connecting nodes outside
of the box with nodes inside the box or vice versa. The layout for the graph inside a box can differ
from the layout of the outer graph.

The layout calculation for graphs with boxes is fast since the nodes inside the box are independent
of the rest of the graph and the layout of the box is calculated separately.

Targets
The box operation can be chosen for a

e Subgraph (menu item Box Subgraph),
e Path region (menu item Box Region...), or
e Neighbor region (menu item Box Neighbors...).

These operations are accessible from the context menu that appears upon a right-click on a node
or subgraph.

Reverse Operation
The reverse operation is Unfold/Unbox (or press the U key).

4.2.3 Cluster

A clustered group of nodes is surrounded by a frame. In contrast to a box, edges from nodes
outside the frame are drawn to nodes inside the frame and vice versa.

Here the layout is calculated as if the graph were unfolded, the only difference being that the
nodes are placed according to the restrictions induced by the common frame. This often results in
rather poor layout quality, layout calculation frequently being slow on account of the restrictions.
Consequently, the boxed layout is preferable whenever possible.

Note: Clustering is an experimental feature. The layout of clustered subgraphs is quite chal-
lenging by nature. aiSee includes an experimental implementation of clustered layout which is
currently not supported nor maintained. Nevertheless, many aiSee users find this feature quite
useful.

Note: In this version, clustering cannot be enabled via the user interface, but only in the GDL
specification of a graph.

4.2.4 Wrapping

All nodes and edges belonging to a group are wrapped using the same color. The layout is not
changed.

Note: Nested wrapping is not supported.

Note: In this version, wrapping cannot be enabled via the user interface, but only in the GDL
specification of a graph.

21
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4.2.5 Summary Nodes

A summary node appears after a folding operation. It represents all the nodes grouped by the
folding operation.

Usually summary nodes can be distinguished from normal graph nodes (e. g. they are drawn in a
different shape and/or color) so that they can be recognized as summary nodes. Then they can be
selected and unfolded.

A summary node can be
e Unfolded (menu item Unfold/Unbox or press the u key),
e Unfolded into a box (menu item Unfold into Box or press the X key),
e Unfolded and represented as a cluster (menu item Unfold into Cluster, press the t key),
e Unfolded and wrapped (menu item Unfold and Wrap or press the w key),

e Drawn exclusively (menu item Exclusive).

22
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4.3 Command Line Options

4.3 Command Line Options

e ——export filename

Directly exports the computed layout into the file named £ilename. Interactive displaying
of the graph is turned off. The file type is automatically derived from the file extension. For
example, ——export out.svg directly exports the graph to SVG. Currently, the following
formats are supported:

- SVG

- PNG

- PS

- PDF

- XPM

- BMP

e ——scale N
Scales the graph to N percent.

e ——area WxH+X+Y
When used in combination with ——export, this option enables an image part to be exported
instead of the entire image. The image part to be exported is specified by a bounding rectan-
gle with the width w and the height #, while X and Y specify an offset from the graph origin,
i.e. from the upper left corner of the layout.

23
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4.4 User Actions

The concept of user actions allows to execute system commands from within aiSee. The User
Actions Mode enables these commands to be accessed. Currently, only the User Action 3 is sup-
ported that requires one node to be selected as argument. To execute the command specified in the
GDL specification, select a node and press 3.

One improvement in aiSee 3 is that the command to be executed no longer has to be specified
globally for the entire graph. Much rather, a different command can be specified for each particular
node. In other words, there is now an attribute useractioncmd3 for nodes.

Support for User Actions 1, 2 and 4 has been dropped in the current version. Instead, aiSee now
implements more sophisticated communication via TCP.

4.4.1 Communication

aiSee 3 can be started in Server Mode by using the command line option —-server port
number.

Communication is done on a per line basis, i.e. a command followed by a newline character is sent
to the server.

Upon a successful operation, the server returns OK” or the requested string. Otherwise, an error
message prefixed by "ERROR: ” is returned.

4.4.2 Commands

e open name
Load the file named name, lay out the graph and display it in the current window.

e opennew name
Load the file named name, lay out the graph and display it in a new window.

e attach name
Connect to the window named name.

e close
Close the current aiSee window.

e exit
Completely exit aiSee (close all windows).
o fit
Set the scale factor so that the entire graph fits in the graph window (maximum aspect).

e zoom factor
Set the scaling factor to factor percent.

e resize width height
Resize the aiSee window. The parameters specify the width and the height of the display
window in pixels, respectively.

24
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4.4 User Actions

move X y
Move the aiSee window. The parameters specify the position of the window in relation to the
root screen in pixels, i.e. the x and y coordinates of the upper left corner of the window.

center x y
Center the coordinates x y in the graph window.

scroll dx dy
Scroll the window over the graph by dx and dy pixels.

center title
Center the node titled t it I1e in the graph window.

set title attr value
Set the value of the attribute attr of the graph item titled title to value. So far, the
following attributes are supported:

— color
— textcolor
— bordercolor
— shape
- label
For the available values, see www.aisee.com/manual/unix/47.htm and

www.aisee.com/manual/unix/45list.htm#shape

get title [$]attr
Retrieve the value of the attribute at t r of the node titled t i t 1e. If the attribute is prefixed
with a $, the attribute value is returned as a string (if possible).

Attributes retrievable so far: cf. ”’set” command.

signal event
Request certain events to be reported. So far, a left-click on a node is recognized (in certain
Usage Modes). If the user clicks on the node, its title prefixed by ’LC ’ is reported.

nosignal event
Do not report events.

update
Redraw graph.

autoupdate [on]|off]
Update graph after each command. The default value is jong. If autoupdate is disabled, send
an “update” command after modifications.

contextmenu clear
Removes all entries from the user context menu.

contextmenu add text id
Adds an entry to the user context menu. The text may not contain spaces, use underbars
instead, aiSee will later replace them with spaces.

dialog command [arguments]

25

<



/ ‘ -

Chapter 4: Advanced Usage

Used to create and display small dialog boxes

— dialog information text
dialog question text
Open a dialog box and display text.

* ’information’ only displays an OK button,
* ’question’ displays a YES and a NO button
Returns "OK” if OK or YES resp. was clicked, otherwise "JERROR: canceled”.

— dialog create name title
Start creation of a dialog with reference name and title t i t 1 e and enter dialog mode.

— dialog show name
Display a dialog and wait for user interaction. Returns OK” if OK was clicked, other-
wise the reason for closing prefixed by an "ERROR: .

— dialog get name field
Return the value of the field £ield of the dialog name.

— dialog set name field value
Set the value of the field field of the dialog name to value.

— dialog clear name field
Clear contents of the field £ield in the dialog name.

While in dialog mode, the following commands are recognized:

— end
Exit dialog mode

— add type field
Add field of type t ype to the dialog named field. Known field types:
* label
* lineedit
* listbox
* mlistbox
* spinbox
- break

Start a new row of widgets.

— clear field
Remove the contents of field

— set field value

26



4.4 User Actions

Add value to the field’s contents.
* for ”lineedit” and "label”, the old value will be replaced by the new one.

x for ”listbox” and “mlistbox”, the new value will be appended to the old one.
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4.5 Reducing Layout Time

aiSee was designed to explore large graphs. However, the layout of large graphs may require
considerable time. Thus, there are many possibilities to speed up the layout algorithm: the graph
can be folded, iterations can be limited, and time limits can be specified.

The first step in visualizing a large graph is avoiding computing the layout of parts of the graph that
are currently not of interest. These parts should be specified as initially folded in the specification.
Folding makes the visible part of the graph smaller, thus enabling the layout to be calculated faster
and the quality of the layout improved. It is useful to first try one of the fast algorithms (dfs,
minbackward, tree), then the medium fast methods (normal, mindepth, maxdepth, ...) before
resorting to the slower methods (mindepthslow, maxdepthslow).

In order to further reduce layout time, some layout phases should be omitted or the maximum
number of iterations of some layout phases limited. However, this usually decreases the quality of
the layout. First, the crossing reduction phase 2 (option —nocopt2, attribute crossing_phase2)
should be skipped as it usually takes the most time. Crossing reduction phase 2 is indicated by B
in the message window (see p. ??). Next, the iterations for the crossing reduction can be limited
(-cmax option, cmax attribute) or another crossing weight selected (-bary option, etc., cross-
ing_weight attribute). Normally, it is not necessary to switch off local crossing optimization,
because this step is quite fast and effective.

If the graph is very unbalanced, the pendulum method may require considerable time (indicated by
m in the message window). In this case, the number of iterations for the crossing reduction should
be limited (-pmax option, pmax attribute). If the straight-line fine-tuning phase takes too long
(indicated by S in the message window), its maximum iteration number should be limited (- smax
option, smax attribute).

Other parameters usually needn’t be changed, because the corresponding phases are quite fast.
Bending reduction in particular improves layout quality greatly and is so fast that the -bending
option is hardly needed.

Fast mode (-fast option) drastically reduces all iteration limits and may result in poor layout
quality.

The drawing of splines is slow, consequently it should be avoided on large graphs.

It is also possible to set a time limit (-timelimit option). If the time limit is exceeded, the
fastest possible mode for the current and the following iteration phases is selected. Selecting a
time limit does not mean that the layout has actually finished when the time has elapsed: Layout
may be faster if the graph is small and/or its structure is simple. It may be much slower, because
even the fastest possible methods may take some time. The time limit is real time, thus the result
of the layout may depend on the load of the computer. Thus, given a time limit, two identical trials
needn’t result in identical layouts.
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5 Graph Description Language (GDL)

GDL is an ASCII text representation of a graph. It describes a graph in terms of nodes, edges,
subgraphs and attributes. A subgraph is described as a normal graph except that it is specified inside
another graph, meaning graph specifications can be nested. aiSee provides special operations for
subgraphs such as folding (see p. 20) to a summary node (see p. 22) , boxing (see p. 21) , clustering
(see p. 21) , or wrapping (see p. 21) .

Graphs, nodes and edges may have attributes that specify details of their appearance on the screen
such as colors, sizes, shapes etc.

There is always only one top-level graph.
It is also possible to specify regions that are to be initially folded after starting aiSee.

aiSee also accepts the #1 ine directives of the C preprocessor. The macro processing facilities of
the C preprocessor offers some tricky possibilities for graph specifications. For example, using a
macro directive would enable different languages for node labels to be chosen.

5.1 Graph Format

A graph (the top-level graph or a subgraph) is specified by

graph: {
< list of graph__entries >
}

A graph_entry is one of the following:

e subgraph (see p. 29), i.e. a subgraph is specified in the same manner a top-level graph is
specified. There is no special keyword for subgraphs.

e node (see p. 30)

e cdge (see p. 30)

e attribute (seep.32)
e region (seep. 33)

The delimiter between items of a list is one or more whitespace characters (spaces, tabs, line feeds,
carriage returns). There is no order required for nodes, edges, subgraphs, or attributes. However,
depending on the layout algorithm selected, the order of nodes may influence the layout.
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5.2 Node Format

A node is specified by

node: {
title: < node title >
< list of node attributes >

}

The title of a node is any valid C string. Strings have to be enclosed in quotes and may contain the
normal C escapes (e.g. \", \n, \f,...).

5.3 Edge Format

There are several different kinds of edges:

e ordinary edges (see p. 30)

back edges (see p. 30)

near edges (see p. 31)

left near edges (see p. 31)

right near edges (see p. 31)

bent near edges (see p. 31)

left bent near edges (see p. 32)

right bent near edges (see p. 32)

5.3.1 Ordinary Edge Format

An ordinary edge is specified by
edge: {
source: < title of source node >

target: < title of target node >
< list of edge attributes >

}

5.3.2 Back Edge Format

Back edges are drawn in the opposite direction as compared to ordinary edges. For instance, if the
layout algorithm tries to give all ordinary edges a top-down orientation, it tries to give the back
edges a bottom-up orientation.

If a graph contains a cycle, not all edges can have the same orientation: Some edges have to be
reversed. In this case, the layout algorithm prefers back edges before selecting any other edge to
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5.3 Edge Format

be reversed.
A back edge is specified by

backedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

}

5.3.3 Near Edge Format

Near edges are drawn so that their source and target nodes are directly neighbored at the same
level. This implies that a node cannot have more than two near edges, i.e. one on the left and one
on the right with respect to the orientation of the graph. Near edges are drawn as short horizontal
lines not crossed by any other edges or nodes.

Hint: Invisible near edges can be used to group nodes at one level.
A near edge is specified by

nearedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

}

Left Near Edge Format: Same as near edge, only that the target node is placed directly neigh-
bored to the left of the source node at the same level.

leftnearedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

}

Right Near Edge Format: Same as near edge, only that the target node is placed directly
neighbored to the right of the source node at the same level.

rightnearedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

}

5.3.4 Bent Near Edge Format

Bent near edges consist of a horizontal part (same as near edges), a bend point and a vertical part.
An edge label (if any) is placed only at the bend point. So bent near edges connect nodes across
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one or more levels yet leave the source node at the left or right side.
A near edge is specified by

bentnearedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

Left Bent Near Edge Format: Same as bent near edge, only that the horizontal part of the
edge leaves the source node on the left.

leftbentnearedge: {
source: < title of source node >
target: < title of target node >
< list of edge attributes >

Right Bent Near Edge Format: Same as bent near edge, only that the horizontal part of the
edge leaves the source node on the right.

rightbentnearedge: ({
source: < title of source node >
target: < title of target node >
< list of edge attributes >

5.4 Attribute Format

Attributes are specified as follows:
< attribute keyword > : < attribute value >

All attributes are optional except for the t it 1e attribute of nodes and the source and target
attribute of edges. The order of attributes is irrelevant.

The attribute value depends on the attribute and is one of the following:

e String,e.g. title: "My family tree"

Integer, e.g. width: 700

Floating point number, €. g. scaling: 1.2

Keyword, e.g. shape: rhomb

Combination of the above, e.g. fontname: "helvB10"

File name, e.g. iconfile: "myicons/butterfly.ppm"
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5.5 Region Format

5.4.1 Default Node and Edge Attributes

It is possible to specify default values for all node or edge attributes in a top-level graph or sub-
graph. The default attributes are specified as follows:

e node. < attribute keyword > : < attribute value >
e cdge. < attribute keyword > : < attribute value >

These default specifications can appear anywhere in a top-level graph or subgraph specification
and apply to all nodes and edges (including back edges, near edges and bent near edges) respec-
tively where the corresponding attribute is not set explicitly. This default specification applies
until another default specification for the same attribute appears or until the end of the subgraph or
top-level graph specification is reached.

5.4.2 Default Summary Node and Edge Attributes

Regions of nodes and edges can be folded (see p. 17). As a result, a summary node is displayed for
all nodes of a region of nodes. In addition, summary edges to this summary node are displayed for
sets of edges to nodes of the region. It is possible to specify the attributes for these summary nodes
and edges that come from a folding operation. This allows folded regions to be given a different
appearance than normal nodes and edges. The attributes for these summary nodes or replacement
edges are specified as follows:

e foldnode. < attribute keyword > : < attribute value >
e foldedge. < attribute keyword > : < attribute value >

5.5 Region Format

It is not only possible to fold regions dynamically, i.e. interactively with the mouse, but also
statically, 1. e. in the specification of the graph.

The format of a region specification is:

region: {
state: < state of the region (folded, boxed, exclusive) >
source: < list of strings specifying start nodes >
target: < list of strings specifying end nodes >
class: < list of integers specifying edge classes >
range: < integer specifying the neighbor region range >

}

The delimiter between items of a list is one or more whitespace characters. The attributes target,
class and range are optional.

range is used to specify a neighbor region, in which case it gives the maximum number of edges
to be followed in order to reach all the nodes of the neighbor region (see p. ??).
A region cannot have a range and target nodes specified at the same time.
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5.6 Examples of GDL Specifications

5.6.1 A Cyclic Graph

These examples show a number of small cyclic graphs without any labels but with different edge
types. The titles are displayed in the nodes. The last example in this sequence shows how the
anchor edge attribute is used.

The layout of the following three example specifications are shown in Figure 5.1.

Example 1: Ordinary Edges
aiSee tries to give all edges the same orientation. But since the graph is cyclic, one edge has to be
reverted (edge D—>A).

0l graph: {
02 // list of nodes

03 node: { title: "A" }

04 node: { title: "B" }

05 node: { title: "C" }

06 note: { title: "D" }

07 node: { title: "E" }

08 // list of edges

09 edge: { source: "A" target: "B" }
10 edge: { source: "A" target: "C" }
11 edge: { source: "C" target: "D" }
12 edge: { source: "D" target: "E" }
13 edge: { source: "D" target: "A" }
14 }

Example 2: Back Edge
The edge to be reverted can be specified as a back edge.

11 backedge: { thickness: 3 source: "C" target: "D" }

Example 3: Near Edges
Near edges can be used to express a close relationship between two nodes and to place nodes right-
or left-neighbored.

09 nearedge: { source: "A" target: "B" }
10 nearedge: { source: "A" target: "C" }
12 nearedge: { source: "D" target: "E" }

The layout of the following three example specifications are shown in Figure 5.2.

Example 4: Bent Near Edge

In some situations, edges are to be horizontally anchored, like near edges, yet the target node is
not to be at the same level. These edges have to have a bend point. This is why bent near edges are
used.

09 bentnearedge: { source: "A" target: "B" }
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5.6 Examples of GDL Specifications

Example 1: Ordinary Edge Example 2: Backedge Edge  Example 3: Near Edge

Figure 5.1: Ordinary, Back and Near Edges

12 bentnearedge: { source: "D" target: "E" }

Example 5: Right-Bent Near Edge
The left or right versions of bent near edges or near edges can be used if it is important to have
edges anchored to a particular side of a node.

09 rightbentnearedge: { source: "A" target: "B" }
10 leftnearedge: { source: "A" target: "C" }
12 rightnearedge: { source: "D" target: "E" }

Example 6: Anchor

The anchor edge attribute can be used if a node label consists of one or more fields that are on
separate lines where outgoing edges are to start. For example, if node D represents a struct with
two fields whose first field is to point to node E and the second one to node A, then the edges are
anchored to the corresponding anchor points 1 and 2. Counting of anchor points starts with 1 at
the top of a node and increases from top to bottom.

Anchor points and near edge specifications cannot be used together, consequently the specification
for Example 6 looks like this:

0l graph: {

02 // list of nodes

03 node: { title: "A" }
04 node: { title: "B" }
05 node: { title: "C" }
06 node: { title: "D" label: "Fieldl\nField2" }
07 node: { title: "E" }

08 // list of edges
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Fieldl

Field?2
B|

Example 4: Bent Near EdgeExample 5: Right Bent-Near EdgeExample 6: Anchor Edge Attribute

Figure 5.2: Bent Near, Right-Bent Near and Anchor Edges

09 bentnearedge: { source: "A" target: "B" }
10 nearedge: { source: "A" target: "C" }

11 backedge: { source: "C" target: "D" }

12 edge: { source: "D" target: "E" anchor: 1}
13 edge: { source: "D" target: "A" anchor: 2}
14}

5.6.2 Control Flow Graph

The following three graphs show the control flow graph of a procedural program. The nodes
contain the text of statements as labels. Not all edges have labels. The visualized control flow
comes from the following nonsense program, which consists of a procedure test and a main
routine in a pseudo imperative language.

PROCEDURE test ( VAR b : INTEGER; c¢ : INTEGER );
BEGIN

b := c + 5;
END

BEGIN // main routine of a nonsense program
x = 1;
WHILE (x = 1) DO

X 1= 2;
test ( x, 1 );
x = 33

OD;

WHILE (x = 1) DO
x = 4;
x = 5;
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END.

Example 7: Control Flow Graph 1

8;
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5.6 Examples of GDL Specifications

ELSE test ( x, 3 );

This example shows a simple visualization of the control flow graph. The graph is shown in

Figure 5.3.

Entry point
test

test_b := test_c+5| |x =

!

Exit point
test

true

false

false

true false

false true

|test (x,S)l |x = Bl

back back

Figure 5.3: Control Flow Graph 1 — Simple Version

graph: { title: "CFG_GRAPH"
splines: vyes
layoutalgorithm: dfs

finetuning: no
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05 display_edge_labels: yes
06 yspace: 55

07 node: { title:"18" label: "test_b := test_c+5" }
08 node: { title:"17" label: "Exit" }

09 node: { title:"16" label: "test (x,3)" }

10 node: { title:"15" label: "x := 8" }

11 node: { title:"14" label: "x=7" }

12 node: { title:"13" label: "x := 6" }

13 node: { title:"12" label: "x=1" }

14 node: { title:"11" label: "test (x,2)" }

15 node: { title:"10" label: "x := 5" }

16 node: { title:"9" label: "x := 4" }

17 node: { title:"8" label: "x=1" }

18 node: { title:"7" label: "x := 3" }

19 node: { title:"6" label: "test (x,1)" }

20 node: { title:"5" label: "x := 2" }

21 node: { title:"4" label: "x=1" }

22 node: { title:"3" label: "x := 1" }

23 node: { title:"2" label: "Start" }

24 node: { title:"1" label: "Exit point\ntest" }
25 node: { title:"0" label: "Entry point\ntest" }
26 edge: { source:"18" target:"1" }

27 edge: { source:"0" target:"18" }

28 edge: { source:"12" target:"17" label: "false" }
29 edge: { source:"8" target:"12" label: "false" }
30 edge: { source:"16" target:"12" label: "back" }
31 edge: { source:"15" target:"12" label: "back" }
32 edge: { source:"13" target:"14" }

33 edge: { source:"14" target:"16" label: "false" }
34 edge: { source:"14" target:"15" label: "true" }
35 edge: { source:"12" target:"13" label: "true" }
36 edge: { source:"4" target:"8" label: "false" }
37 edge: { source:"11" target:"8" label: "back" }
38 edge: { source:"10" target:"11" }

39 edge: { source:"9" target:"10" }

40 edge: { source:"8" target:"9" label: "true" }
41 edge: { source:"3" target:"4" }

42 edge: { source:"7" target:"4" label: "back" }
43 edge: { source:"6" target:"7" }

44 edge: { source:"5" target:"6" }

45 edge: { source:"4" target:"5" label: "true" }
46 edge: { source:"2" target:"3" }

47 }

Example 8: Control Flow Graph 2
This example shows an improved visualization of the control flow graph. The graph is shown in
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Figure 5.4. The start, exit and branch nodes are drawn in different shapes so that they can be better
recognized. The edges closing a cycle are specified as back edges in order to see the uniform flow
of control in the other edges. The edges at the branch nodes are anchored at the left and right via
the bent near edge specification.

ntry point
test

|test_b = test_c+5|

=it point
test

false

false

back  back

Figure 5.4: Control Flow Graph 2 with Rhomb-shaped Nodes and Near Edges

0l graph: { title: "CFG_GRAPH"

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

layoutalgorithm: dfs

finetuning: no

display_edge_labels:

yspace: 55

node: { title:"18"
node: { title:"17"
node: { title:"106"
node: { title:"15"
node: { title:"14"
node: { title:"13"
node: { title:"12"
node: { title:"11"
node: { title:"10"
node: { title:"9"
node: { title:"8"
node: { title:"7"
node: { title:"o"
node: { title:"5"
node: { title:"4"

yes

label:
label:
label:
label:
label:
label:
label:
label:
label:

label:
label:
label:
label:
label:
label:

"test_b := test_c+5" }
"Exit" shape: ellipse }
"test (x,3)" }

"y = 8" }
"x=7" shape: rhomb }
"y = " }

"x=1" shape: rhomb }
"test (x,2)" }

"x = 5" }

"x 1= 4"}

"x=1" shape: rhomb }
"x = 3"}

"test (x,1)" }

"x 1= 2"}

"x=1" shape: rhomb }
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

}

node: { title:
node: { title
node: { title:
node: { title
edge: {

edge: {
bentnearedge:
bentnearedge:
backedge:
backedge:

edge:
bentnearedge:
bentnearedge:
bentnearedge:
bentnearedge:
backedge:

edge:

edge:
bentnearedge:
edge:

backedge:

edge:

edge:
bentnearedge:
edge:

"3" label: "x := 1" }

:"2" label: "Start" shape: ellipse }

"1" label: "Exit point\ntest" shape: ellipse }
:"0" label: "Entry point\ntest" shape: ellipse }

source:"18" target:"1" }

source:"0" target:"18" }

{ source:"12" target:"17" label: "false" }

{ source:"8" target:"12" label: "false" }

{ source:"16" target:"12" label: "back" }
{ source:"15" target:"12" label: "back" }

{ source:"13" target:"14" }

{ source:"14" target:"16" label: "false" }
{ source:"14" target:"15" label: "true" }
{ source:"12" target:"13" label: "true" }

{ source:"4" target:"8" label: "false" }

{ source:"11" target:"8" label: "back" }

{ source:"10" target:"11" }

{ source:"9" target:"10" }

{ source:"8" target:"9" label: "true" }

{ source:"3" target:"4" }

{ source:"7" target:"4" label: "back" }

{ source:"6" target:"7" }

{ source:"5" target:"6" }

{ source:"4" target:"5" label: "true" }

{ source:"2" target:"3" }

Example 9: Control Flow Graph 3

This example shows another improved visualization of the control flow graph of Example 7. The
graph is shown in Figure 5.5. Here an orthogonal layout is used so that the graph looks like a
typical flowchart. For orthogonal layout, a large down factor and near factor and an up factor of
zero is recommended. This improves the layout of long vertical edges. Add the following lines to
Example 8 after line 01:

xlspace:

manhattan_edges:

layout_upfactor:

yes

layout_downfactor: 100

layout_nearfactor: 0

12

5.6.3 The Effect of the Layout Algorithms

The following sequence of layouts shows the same graph visualized by different layout algorithms.
The graph is cyclic, so the algorithm tree can’t be used.

A key problem is selecting the nodes that appear at the top level of the graph. The layout algorithm
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5.6 Examples of GDL Specifications

false

"l
B

back true—<:\1.\ false

Ex,l)l |x

back  back

|

|x = Bl |test (x,S)l

Figure 5.5: Control Flow Graph 3 with Manhattan Edges

-
= 4| back true false

looks for candidates that have no incoming edges yet at least one outgoing edge. If such nodes do
not exist as in this example (Example 10), the algorithms mindegree, minindegree, maxoutdegree
are the most appropriate algorithms.

The fine-tuning phase eliminates long edges, meaning the tuned graph is more compact. Note that
the tuned graph created by maxdephtslow need not be of maximum depth because fine-tuning may
have reduced the depth further. The tuned graph created by mindepthslow needn’t be of minimum
depth, either. All these partitioning algorithms are heuristics.

Example 10: A cyclic graph

0l graph: {

02 xspace:

03 node: {
04 node: {
05 node: {
06 node: {
07 node: {
08 edge: {
09 edge: {

25

xlspace:
title: "O"
title: "1"
title: "4"
title: "7"
title: "O"
source: "O"
source: "O"

15
label:

node:
node:

node:

target:
target:

"Start" }

"1" }
"2" }
41

{ title: "2" } node: { title:
{ title: "5" } node: { title:
{ title: "8" } node: { title:

"3" }
"6" }
"9" }
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10
11
12
13
14
15
16
17
18
19
20
21
22
23

edge: { source: "O" target: "3" }
edge: { source: "0O" target: "4" }
edge: { source: "O0" target: "5" }
edge: { source: "O0" target: "9" }
edge: { source: "1" target: "3" }
edge: { source: "2" target: "4" }
edge: { source: "3" target: "5" }
edge: { source: "5" target: "O" }
edge: { source: "9" target: "O" }
edge: { source: "O0" target: "o6" }
edge: { source: "6" target: "7" }
edge: { source: "7" target: "8" }
edge: { source: "8" target: "O" }

}

Here follows a discussion of all the different hierarchical layout algorithms with and without fine-
tuning for this example.

e normal, finetuning: no
The normal layout algorithm breaks the cycle so that only one reverted edge is necessary (see
left of Figure 5.6).

e normal, finetuning: yes
Compared to the previous layout, the fine-tuning phase has balanced the position of the node
9. The long edge 8—>Start is not balanced since this would create additional reverted edges
(see right of Figure 5.6).

Figure 5.6: Example 10, normal layout, with and without finetuning

e dfs, finetuning: no
The layout algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to
result in the same layout (see left of Figure 5.7).

e dfs, finetuning: yes
The algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to result
in the same layout (see right of Figure 5.7).
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Figure 5.7: Example 10, dfs layout, with and without finetuning

e minbackward, finetuning: no
This is almost the same layout as for the normal layout algorithm. Again only one reverted
edge is necessary. The layout algorithm maxdepth without fine-tuning results in the same
layout (see left of Figure 5.8).

e minbackward, finetuning: yes
Compared to the layout without fine-tuning, here the long edge 8—>Start is partially elimi-
nated and the position of node 9 is balanced again (see right of Figure 5.8).

Figure 5.8: Example 10, minbackward layout, with and without finetuning

e maxdepth, finetuning: no
Same as minbackward without fine-tuning (see left of Figure 5.8).

e maxdepth, finetuning: yes
The long edge 8—>Start is now fully eliminated. Here, the fine-tuning phase is allowed to
revert additional edges (see left of Figure 5.9).

e mindepth, finetuning: no
The layout algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to
result in the same layout (see left of Figure 5.7).

e mindepth, finetuning: yes
Compared to the previous layout the long edge 8—>Start is eliminated. The algorithms dfs, A
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Figure 5.9: Example 10, maxdepth; and mindegree layout with finetuning

mindepth, minindegree, maxoutdegree and maxdegree happen to result in the same layout
(see right of Figure 5.7).

e maxdepthslow, finetuning: no

This depth six layout is in fact of maximum depth as compared to all the other variants (see
left of Figure 5.10).

e maxdepthslow, finetuning: yes
The fine-tuning phase eliminates the long edge Start—>6. Thus, the layout is no longer of

maximum depth. Fine-tuning may destroy the maximum depth property (see right of Figure
5.10).

Figure 5.10: Example 10, maxdepthslow layout, with and without finetuning

e mindepthslow, finetuning: no
Graphs that are of minimum depth tend to have many nodes at the top level. Compared to
all untuned graphs, this layout is of minimum depth. It should be noted, however, that the

algorithm mindepth with fine-tuning is able to produce a flatter layout (see left of Figure
5.11).
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e mindepthslow, finetuning: yes
Compared to the previous layout, the long edge 8—>Start is balanced again (see right of
Figure 5.11).

Figure 5.11: Example 10, mindepthslow layout, with and without finetuning

e maxindegree, finetuning: no
Here node 3 is placed at the level zero because it has the maximum indegree. Node O is not
chosen for level zero because it doesn’t have any outgoing edges (see left of Figure 5.12).

e maxindegree, finetuning: yes
Once again the long edge 8—>Start of the previous algorithm is eliminated by balancing the
position of node 8. The algorithms dfs, mindepth and minindegree happen to result in the
same layout (see right of Figure 5.12).

§ u

Figure 5.12: Example 10, maxindegree layout, with and without finetuning

e minindegree, finetuning: no
The layout algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to
result in the same layout (see left of Figure 5.7).

e minindegree, finetuning: yes
The algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to result
in the same layout (see right of Figure 5.7).

e maxoutdegree, finetuning: no
The layout algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to
result in the same layout (see left of Figure 5.7).
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e maxoutdegree, finetuning: yes

The algorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to result
in the same layout (see right of Figure 5.7).

e minoutdegree, finetuning: no

Nodes 4 and 0 with a minimum outdegree of zero cannot be start nodes because start nodes
have to have at least one successor otherwise they would create single-node components of
the spanning tree. Start nodes can be any other nodes except Start, from which 1, 2, and 6
happen to be selected (see left of Figure 5.13).

e minoutdegree, finetuning: yes

The long edges Start—>1, Start—>2 and Start->6 are eliminated (see right of Figure 5.13).

P oo

|€3\'_.

Figure 5.13: Example 10, minoutdegree layout, with and without finetuning

e maxdegree, finetuning: no

The Start node has the maximum number of incoming and outgoing edges, so it is selected
as the start node of the spanning tree, i.e. it appears at the topmost level. The layout al-
gorithms dfs, mindepth, minindegree, maxoutdegree and maxdegree happen to result in the
same layout (see left of Figure 5.7).

e maxdegree, finetuning: yes

Compared to the previous layout the long edge 8—>Start is eliminated. The algorithms dfs,
mindepth, minindegree, maxoutdegree and maxdegree happen to result in the same layout
(see right of Figure 5.7).

e mindegree, finetuning: no

The candidates for start nodes of the spanning tree are 1, 2, 6, 7, 8 and 9 because they have
a minimum degree of two. 1, 2 and 6 happen to be selected as the start nodes. Note that
nodes 4 and 0 are not candidates for start nodes because they do not have outgoing edges.
The layout algorithms minoutdegree and mindegree happen to result in the same layout (see

left of Figure 5.13).

e mindegree, finetuning: yes

Compared to the previous layout, the long edges Start->1 Start->2 and Start->6 are
eliminated. This changes the structure of the layout entirely (see right of Figure 5.9).
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5.6.4 Tree Layout

The following example shows a typed syntax tree. This tree can either be drawn by the specialized
algorithm for “downward laid-out trees” or by the normal algorithms. When the normal algorithms
are used to draw a tree, it is advisable to increase the layout down factor in order to obtain good
results (see Figure 5.14). If the layout down factor is not used, the incoming edges draw the nodes
too much in the direction of the parent node.
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Figure 5.14: Example 11, normal layout

A nice layout 1s achieved by the specialized tree algorithm with a tree factor of 0.9 (see Figure
5.15).

If an orthogonal layout is needed, the attribute smanhattan_edges can be used. For trees, this at-
tribute is more appropriate than the standard Manhattan layout with manhattan_ edges (see Figure
5.16).

Example 11: Syntax Tree

0l graph: {

02 title: "Typed Syntax Tree"

03 node: { title:"503160" label: "Identifier\ntst3 (0)" }
04 node: { title:"503240" label: "Identifier\nx (0)" }
05 node: { title:"502952" label: "INTEGER" }
06 node: { title:"503304" label: "VarDecl" }
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5.6.5 Combination of Features

linestyle:
linestyle:
linestyle:
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Figure 5.15: Example 11, tree layout, treefactor: 0.9
node: { title:"TO" label: "no type" }
node: { title:"T1" label: "no type" }
node: { title:"T2" label: "int" }
edge: { source:"503304" target:"503240" }
edge: { source:"503304" target:"502952" }

dotted }
dotted }
dotted }

Idertifisr

% 00

]

The following example (see Figure 5.17) is taken from [GKNV93] and shows the dependencies of
different shell programs. A combination of aiSee features has been used to visualize it. There is
a time scale to indicate the origin of the programs. The shells themselves are nodes that have to
be placed at the same rank as their birth dates. The level attribute is used to set the nodes at these
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Figure 5.16: Example 11, tree layout, smanhattan_edges: yes

positions. In addition, the time axis should be positioned at the left side of the shell dependence
graph. This is achieved by the horizontal_order attribute at some of the nodes. However, this
attribute doesn’t work unless the graph is connected, which is why three invisible edges are created.

Like any other edges, invisible edges influence the positions of the nodes. They pull their adjacent
nodes together. To avoid this effect on the invisible edges, the priority of the invisible edges is set to
zero and the priority of the visible edges to 100. There are many ways to change the priority. The
priority attribute can be set, and the factors layout_downfactor, layout_downfactor and lay-
out_downfactor as well. The real priority of a downward edge is the product layout_downfactor
X priority.

The Bourne shell should be positioned to the left of the Mashey shell and the csh shell to the
right of the Mashey shell. Therefore, the level two nodes receive a horizontal order. However, csh
is on level three, and only its edge crosses level two. Therefore, the horizontal _order attribute is
set for this edge as well. Now the edge is drawn to the right of the Mashey shell.

Default attribute specifications are used for the height, width and border width of nodes and for
the style of edges in order to reduce the amount of specification. The various shell types are
differentiated by using ellipses for the variations of the Korn shell, triangles for C shells and a
rhomb for the tcl shell. The graph is acyclic, which is why the layout algorithm minbackward is
used. Edges are drawn by splines.

Example 12: Development of Shells
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01 graph: {

02 title: "shells"

03 splines: yes

04 layoutalgorithm: minbackward
05 layout_nearfactor: 0

06 layout_downfactor: 100
07 layout_upfactor: 100

08

09 // First the time scale
10

11 node.height: 26

12 node.width: 60

13 node.borderwidth: 0

14 edge.linestyle: dashed

15

16 node: { title: "1972" level: 1 horizontal_order: 1}

17 node: { title: "1976" level: 2 horizontal_order: 1 }

18 node: { title: "1978" level: 3 }

19 node: { title: "1980" level: 4 }

20 node: { title: "1982" level: 5 horizontal_order: 1 }

21 node: { title: "1984" level: 6 }

22 node: { title: "1986" level: 7 }

23 node: { title: "1988" level: 8 }

24 node: { title: "1990" level: 9 }

25 node: { title: "future" level: 10 horizontal_order: 1 }
26

27 edge: { source: "1972" target: "1976" }

28 edge: { source: "1976" target: "1978" }

29 edge: { source: "1978" target: "1980" }

30 edge: { source: "1980" target: "1982" }

31 edge: { source: "1982" target: "1984" }

32 edge: { source: "1984" target: "1986" }

33 edge: { source: "1986" target: "1988" }

34 edge: { source: "1988" target: "1990" }

35 edge: { source: "1990" target: "future" }

36

37 // We need some invisible edge to make the graph fully connected.
38 // Otherwise, the horizontal_order attribute would not work.
39

40 edge: { source: "ksh-i" target: "Perl" linestyle: invisible priority: 0 }
41 edge: { source: "tcsh" target: "tcl" linestyle: invisible priority: 0 }

42 nearedge: { source: "1988" target: "rc" linestyle: invisible }
43 nearedge: { source: "rc" target: "Perl" linestyle: invisible }
44

45 // Now the shells themselves

46 // Note: the default value -1 means: no default
47

48 node.height: -1

49 node.width: -1

50 node.borderwidth: 2

51 edge.linestyle: solid

52
53 node: { title: "Thompson" level: 1 horizontal_order: 2 }
54 node: { title: "Mashey" level: 2 horizontal_order: 3 }

N 55 node: { title: "Bourne" level: 2 horizontal_order: 2 }
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56 node: { title: "Formshell" level: 3 }

57 node: { title: "csh" level: 3 shape: triangle }

58 node: { title: "esh" level: 4 horizontal_order: 2 }

59 node: { title: "vsh" level: 4 }

60 node: { title: "ksh" level: 5 horizontal_order: 3 shape: ellipse }
61 node: { title: "System V" level: 5 horizontal_order: 5 }
62 node: { title: "v9sh" level: 6 }

63 node: { title: "tcsh" level: 6 shape: triangle }

64 node: { title: "ksh-i" level: 7 shape: ellipse }

65 node: { title: "KornShell" level: 8 shape: ellipse }

66 node: { title: "Perl" level: 8 }

67 node: { title: "rc" level: 8 }

68 node: { title: "tcl" level: 9 shape: rhomb }

69 node: { title: "Bash" level: 9 }

70 node: { title: "POSIX" level: 10 horizontal_order: 3 }
71 node: { title: "ksh-POSIX" level: 10 horizontal_order: 2 shape: ellipse }
72

73 edge: { source: "Thompson" target: "Mashey" }

74 edge: { source: "Thompson" target: "Bourne" }

75 edge: { source: "Thompson" target: "csh" horizontal_order: 4 }
76 edge: { source: "Bourne" target: "ksh" }

77 edge: { source: "Bourne" target: "esh" }

78 edge: { source: "Bourne" target: "vsh" }

79 edge: { source: "Bourne" target: "System-V" }

80 edge: { source: "Bourne" target: "v9sh" }

81 edge: { source: "Bourne" target: "Formshell" }

82 edge: { source: "Bourne" target: "Bash" }

83 edge: { source: "csh" target: "tcsh" }

84 edge: { source: "csh" target: "ksh" }

85 edge: { source: "Formshell" target: "ksh" horizontal_order: 4 }
86 edge: { source: "esh" target: "ksh" }

87 edge: { source: "vsh" target: "ksh" }

88 edge: { source: "ksh" target: "ksh-i" }

89 edge: { source: "System-V" target: "POSIX" }

90 edge: { source: "v9sh" target: "rc" }

9] edge: { source: "ksh-i" target: "KornShell" }

92 edge: { source: "ksh-i" target: "Bash" }

93 edge: { source: "KornShell" target: "Bash" }

94 edge: { source: "KornShell" target: "POSIX" }

95 edge: { source: "KornShell" target: "ksh-POSIX" }

96 }
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5.7 Graph Attributes

This section describes the whole list of graph attributes. Each attribute is listed together with its
type, default value and where it can be used, i.e. in the top-level graph, a subgraph specification
or in both.

e amax

Type: integer

Default value: automatic

Attribute of: top-level graph

Description:

This attribute specifies the number of iterations that are animated after relayout. Specifying
0 means animation is turned off.

arrow_mode

Type: fixed, free

Default value: free

Attribute of: top-level graph, subgraphs

Description:

This attribute specifies two modes for drawing arrow heads.

— fixed
This arrow mode should be used if port sharing (see port_sharing on p. 66 ) is used
because then only a fixed set of rotations for the arrow heads are used. Here the arrow
head is rotated only in increments of 45 degrees, and only one arrow head occurs at each
port.

- free
Here each arrow head is rotated individually for each edge. If a node has many incoming
edges, this parameter can lead to a confusing image.

attraction

Type: integer

Default value: 60

Attribute of: top-level graph

Description:

This attribute applies only to the forcedir layout algorithm.

Here it is part of the force-directed spring embedder during attractive impulse calculation. It
specifies the constant proportional to the attractive forces acting on a node.

This constant and its repulsive counterpart (see p. 68) enable the length of edges to be con-
trolled. For example, if only attractive and repulsive forces are working on a node, an edge
length of n pixels is achieved for edges with priority of 1 (see edge attribute priority on p. 88)
by specifying n? for the attributes attraction and repulsion. Usually the values for these two
attributes are of the same order of magnitude.

For details, see p. 101.

bmax
Type: integer
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Default value: 100

Attribute of: top-level graph, subgraphs

Description:

This attribute sets the maximum number of iterations of the phase reducing edge bends.
Edge bends are used to prevent edges from being drawn across nodes. Reducing the number
of iterations reduces layout calculation time, however the layout quality may suffer.

border
Type:
X : integer pixels or
y : integer pixels
Default value: x : 600, y : 600
Attribute of: top-level graph
Description:
This attribute applies only to the forcedir layout algorithm.

Depending on the specification of the layout parameters for the forcedir layout algorithm it is
possible for nodes to move far away from one another (especially single nodes not connected
to the main graph) This prevents nodes from being placed “infinitely” far from one another.

These two attributes enable a rectangle to be specified within which the graph is drawn.
For details, see p. 101.

bordercolor
Type: black, blue, red, ...
Default value:
Same as the value of the textcolor attribute for summary nodes
Attribute of: subgraphs
Description:
Specifies the color for borders of summary nodes, boxes and frames of clusters. For details
on colors, see p. 90. See also color (p. 54) and textcolor attribute (p. 73).

borderstyle

Type: continuous, dashed, dotted, double, invisible, solid, triple

Default value: continuous

Attribute of: subgraphs

Description:

This attribute specifies the line style used for drawing the borders of a summary node. See
also edge attribute linestyle (p. 87).

borderwidth

Type: integer

Default value: 2 pixels

Attribute of: subgraphs

Description:

This attribute specifies the thickness of the border of a summary node in pixels.

classname
Type: integer : string
Default value: 1: “17,2: “27,3: “3”, ...
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Attribute of: top-level graph

Description:

This attribute enables the names of edges classes to be introduced. These names appear in
the Select Edge Classes dialog box. For details on edge classes, see p. ??.

cmin, cmax

Type: integer

Default value: 0 for cmin, infinite for cmax

Attribute of: top-level graph, subgraphs

Description:

The cmin attribute sets the minimum number of iterations that are performed for reducing
crossings using crossing weights. The normal method stops when two consecutive checks
no longer cause the number of crossings to be reduced. However, this number of crossings
might be a local minimum, meaning the number of crossing might decrease even more after
some more iterations.

The ecmax attribute sets the maximum number of iterations of the crossing reduction phase. A
reduction of this value causes the layout process to be speeded up. The default value infinite
means that the method is iterated as long as any improvement is possible.

color
Type: black, blue, red, ...
Default value:
white for top-level graph
white for subgraphs
Attribute of: top-level graph, subgraphs
Description:

— top-level graph
Here the color attribute specifies the background color of the graph window.

— subgraphs
Here it specifies the background color of subgraphs. This color is valid as the back-
ground color in summary nodes, boxes, clusters and as a wrapping color.

For details on colors, see p. 90. See also attributes textcolor (p. 73) and bordercolor (p. 53).

colorentry

Type: integer : integer integer integer

Default value: no default value defined

Attribute of: top-level graph, subgraphs

Description:

This attribute enables the default color map to be filled and changed. A color is a triple of
integer values for the red, green and blue part. Each integer ranges from O (color part turned
off) to 255 (color part turned on), e.g. 0 0 O specifies the color black and 255 255 255
specifies the color white. For instance, colorentry 75 : 70 130 180 sets map
entry 75 to steel blue. This color can be used by merely specifying 75 wherever a color value
is expected. For more details on colors, see p. 90.

crossing_optimization
Type: yes, no
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Default value: yes

Attribute of: top-level graph, subgraphs

Description:

yes activates the crossing optimization phase, which works locally. It is a postprocessing
phase after normal crossing reduction. It tries to optimize locally by exchanging pairs of
nodes to reduce the number of crossings.

e crossing_phase2
Type: yes, no
Default value: yes
Attribute of: top-level graph, subgraphs
Description:
yes activates crossing reduction phase two. In this phase, nodes having equal crossing
weights are permuted. Note that this is the most time-consuming phase of crossing reduction.

e crossing_weight
Type: bary, median, barymedian, medianbary
Default value: bary
Attribute of: top-level graph, subgraphs
Description:
This attribute specifies the weight to be used for crossing reduction. There is no general rec-
ommendation as to which is the best method. A guideline might be to use bary if the degree
of the nodes is large and median or one of the hybrid methods barymedian or medianbary if
the degree is small, the degree of a node being the total of incoming and outgoing edges at a
node. See p. 105 for details.

— bary
The barycenter is used for calculating the weights during crossing reduction. This is the
fastest method for graphs with nodes whose average degree is very large.

— median
The median center is used for calculating the weights during crossing reduction.

— barymedian
These weights are the combination of barycenter and mediancenter weights, with
barycenter having priority and mediancenter only being used for nodes whose barycen-
ter weights are equal.

— medianbary
These weights are the combination of barycenter and mediancenter weights, with the
mediancenter having priority.

e dirty_edge_labels
Type: yes, no
Default value: no
Attribute of: top-level graph, subgraphs
Description:
yes forces a fast layout of edge labels, which may result in overlapping of labels. Dirty edge
labels cannot be used if splines are used for edge drawing.

o display_edge_labels
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Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

yes: edge labels are displayed, no: edge labels are not displayed.

o edges
Type: yes, no
Default value: yes
Attribute of: top-level graph
Description:
Deprecated. no suppressed the drawing of edges in the top-level graph and in all nested
subgraphs.

e energetic
Type: yes, no
Default value: no
Attribute of: top-level graph
Description:
This attribute applies only to the forcedir layout algorithm.

Apart from the forces of the spring embedder and the magnetic fields, the local energy level
of a node can be taken into account in deciding whether the node should move or not. Setting
this attribute to yes causes the local energy present at a node to be considered during layout.

For details, see p. 101.

e energetic attraction, energetic repulsion, energetic gravity,
energetic crossing, energetic overlapping, energetic border
Type: float
Default values: see list below
Attribute of: top-level graph
Description:

This attribute applies only to the forcedir layout algorithm.

Apart from the forces of the spring embedder and the magnetic fields, the local energy level
of a node can be taken into account in deciding whether the node should move or not. The
behavior of the local energy present at a node can be influenced via the following attributes:

— energetic attraction, Default value: 70.0
Weight of the attractive energy of edges

— energetic repulsion, Default value: 70.0
Weight of the repulsive energy between nodes

— energetic gravity, Default value: 0.3
Weight of the gravitational energy of a node

— energetic crossing, Default value: 80.0
Weight of the global energy of an edge crossing

— energetic overlapping, Default value: 80.0
Weight of the global energy of a node overlapping
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— energetic border, Default value: 70.0
Weight of the border energy of a node

Gauging layout quality can be done as follows: The better the layout, the lower the total of
all the energy values mentioned above.

For details, see p. 101.

equal_y_dist

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

If this attribute is enabled (yes), then the vertical distance in a hierarchical layout is equal
among all levels.

fast_icons

Type: yes, no

Default value: no

Attribute of: top-level graph

Description:

Deprecated. yes: causes icon file loading to be faster, which may negatively impact the
quality of the drawing if not all the icon colors are present. For details on pictures in nodes,
see p. 91.

fdmax

Type: integer

Default value: 300

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

Here it is used in the simulated annealing part of the algorithm. It specifies the upper hard
limit for the number of iterations performed. The algorithm stops when the global tempera-
ture drops below a threshold value or when the limit specified here is reached.

For details, see p. 101.

finetuning

Type: yes, no

Default value: yes

Attribute of: top-level graph, subgraphs

Description:

no: switches off the fine-tuning phase of the graph layout algorithm. The fine-tuning phase
tries to give all edges the same length. It tries to improve the ranks of nodes in order to avoid
very long edges (see p. 103).

focus

Type: no type

Default value: no value

Attribute of: subgraphs
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Description:

This attribute sets the focus for the summary node of a subgraph, i.e. if the status of the
subgraph is folded at startup, then the summary node of the subgraph for which focus was
specified is centered in the graph window.

Note: The focus can also be specified for nodes (see node attribute p. 78). It goes without
saying that the focus attribute should appear only once in a graph specification.

fontname

Type: string

Default value: default font drawn by turtle graphics routines

Attribute of: subgraphs

Description:

This attribute specifies a pixel font different from the default font and used for drawing
the text labels of summary nodes. This font is given by the name of the aiSee font file
containing the font description, e.g. a 12-point Times Roman font can be specified via
fontname: "timR12". Note: If the font file is not in the current directory the envi-
ronment variable ATSEEFONTS has to be set to the directory containing the font description
files. For details on fonts, see p. 92.

fstraight_phase

Type: yes, no

Default value: no

Attribute of: top-level graph

Description:

yes: forces straight edges that are not anchored at the same position on the border of the
nodes. This is useful only if no port sharing (see p. 66) is selected, because bends are avoided
by correcting the port position.

gravity

Type: float

Default value: 0.0625

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

It is used for impulse calculation. Only using a simulation of a spring embedder would force
unconnected components of a graph to move further and further apart from one another, as
there would be no attractive forces acting between them. That is why gravity is introduced
as a counterforce.

This attribute specifies the constant which is proportional to the gravitational force acting on
a node. This constant controls the strength of the gravitational force, e.g. a value of zero
cancels out the influence of any gravitational force.

For details, see p. 101.

height
Type: integer
Default value:
Top-level graph: (height of root screen - 100) pixels
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Subgraphs: (height of the label for summary nodes) pixels
Attribute of: top-level graph, subgraphs
Description:
The meaning of this attribute depends on where it is specified:

— top-level graph
This attribute specifies the height of the display window in pixels.

— subgraphs
Here it specifies the height of the summary node.

See also graph attribute width (p. 75).

hidden

Type: integer

Default value: none

Attribute of: top-level graph

Description:

This attribute specifies the edge class to be hidden. To hide more than one edge class, repeat
this attribute for each additional edge class. For more details, see p. 2?.

Edges in such a class are ignored during layout calculation and are not drawn. Nodes that are
only accessible (forward or backward) via edges of a hidden class are not drawn. However,
nodes that are not accessible at all are drawn (see p. 60).

Note the difference between hiding edge classes and the edge line style invisible (see p. 88).
Hidden edges do not exist in the layout. Edges with the invisible line style exist in the
layout, 1. e. they influence the layout, meaning they need space and may produce crossings,
for example.

horizontal_order

Type: integer

Default value: none (corresponds to -1)

Attribute of: subgraphs

Description:

In a hierarchical layout, this attribute specifies the horizontal position of the summary node
within a level (see p. 74). The nodes specified via horizontal positions are ordered according
to these positions within the levels. Nodes without this attribute are inserted into this ordering
by the crossing reduction mechanism (see p. 105).

Note: Connected components are handled separately during crossing reduction, thus it is not
possible to intermix nodes of different connected components in one ordering sequence. For
example, one connected component consists of nodes A, B, C and another of nodes D, E, all
nodes being positioned at the same level. Thus, for instance, it is not possible to specify the
following horizontal order at level 0: A, D, C, E.

Note further: If the algorithm for downward laid-out trees is used the specified horizontal or-
der is retained only within nodes that are children of the same node, i. e. in case of downward
laid-out trees it is not possible to specify a horizontal order for the entire level.

iconcolors
Type: integer
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Default value: 32

Attribute of: top-level graph

Description:

Deprecated. This attribute specifies the size of the color map used for colors in bitmap files.
For details on pictures in nodes, see p. 91.

iconfile

Type: string

Default value: no default value

Attribute of: subgraphs

Description:

This attribute specifies the bitmap file (format raw PBM, PPM) to be displayed in the sum-
mary node of the folded subgraph. Note: if the bitmap file to be displayed is not in the current
directory the environment variable ATSEEICONS can be set to the directory containing the
bitmap file. For details on pictures in nodes, see p. 91.

icons

Type: yes, no

Default value: yes

Attribute of: top-level graph
Description:

no: disables displaying of icons in nodes.

ignore_singles

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

yes: hides all nodes of the remaining graph which would appear singly and unconnected.
These nodes have no edges at all and drawing them sometimes results in an ugly layout of
the remaining graph. The default setting is to show all nodes (no option).

importance

Type: integer

Default value: 0 (which means infinity)

Attribute of: subgraphs

Description:

Deprecated. This was the central attribute when it came to filtering in fish-eye views as
it enabled the importance of a summary node of a folded subgraph to be specified via an
Integer.

Low integers signified less important nodes which were filtered out first by a filtering fish-eye
view. High integer numbers signified nodes that were important, them being rarely filtered
out. A value of 0 represented an infinite importance, the result being that these nodes were
never filtered out. This attribute existed for nodes too, see p. 79.

infol, info2, info3
Type: string
Default value: empty string for all three
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Attribute of: subgraphs

Description:

These attributes enable three additional text fields to be specified for a summary node of a
folded subgraph. The same set of attributes exists for nodes (see node attribute infol, p. 80).
These additional information fields can be selected interactively from the submenu of the
Information menu (see p. ??).

infoname

Type: integer : string

Default value: 1: “0”,2: “17,3:“2”

Attribute of: top-level graph

Description:

This attribute enables names for the additional information fields available for each node to
be introduced. These names appear in the submenu of the menu item Information in the
Misc menu of the menu line. For details on additional information fields, see p. ?? and p. 60.

inport_sharing

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs
Description

See graph attribute port_sharing (p. 66).

label

Type: string

Default value: empty string

Attribute of: subgraphs

Description:

This string is displayed inside the summary node of a folded subgraph. If no label is spezified
the value of the title of the subgraph is used. If there is no label or title specified for the
subgraph then the file name of the graph spezification is used.

Note: This text may contain control characters, e.g. “\n” (newline character), that influence
the size of the node (see 5.12)

invisible

Type: integer

Default value: no default value

Attribute of: top-level graph

Description:

This attribute is a synonym for the graph attribute hidden (p. 59).

late_edge_labels

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

This attribute controls the moment when edge labels are drawn.

- yes
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The graph is first partitioned and then edge labels are introduced.

- no
In this case the algorithm first creates labels and then partitions the graph. This option
yields a more compact layout, but may result in more crossings.

¢ layoutalgorithm
Type: normal, maxdepth, mindepth, ...
Default value: normal
Attribute of: top-level graph, subgraphs
Description:
This attribute specifies the basic layout algorithms, there being two main categories. The first
fourteen algorithms describe variations of a hierarchical layout, whereas the last algorithm
implements a force-directed layout. The variations differ in the way nodes are selected for
the various levels in the hierarchical layout.

— normal
This algorithm is the default algorithm. It tries to give all edges the same orientation and
is based on the calculation of strongly connected components. The algorithms based on
depth first search are faster.

- dfs
This algorithm uses a depth first search for layout calculation, but does not enforce
additional constraints pertaining to the degree of nodes. It is faster than the normal
layout algorithm. The result is heavily dependent on the initial order of the nodes in the
specification.

— maxdepth/mindepth
These two algorithms are based on depth first search and are both fast heuristics.
maxdepth tries to increase the depth of the layout. mindepth tries to increase the width
of the layout.

— maxdepthslow/mindepthslow
These slower algorithms might be better if the fast heuristics offered by the algorithms
maxdepth and maxdepth do not provide satisfying results. maxdepthslow tries to in-
crease the depth of the layout and mindepthslow the width of the layout.

— maxindegree / minindegree
maxindegree schedules nodes with a maximum of incoming edges first, i. e. these nodes
are positioned early. minindegree schedules nodes with a minimum of incoming edges
first.

— maxoutdegree / minoutdegree
maxoutdegree schedules nodes with a maximum of outgoing edges first, i.e. these
nodes are positioned early. minoutdegree schedules nodes with a minimum of outgoing
edges first.

— maxdegree / mindegree
maxoutdegree schedules nodes with a maximum of the sum of incoming and outgoing
edges first, 1. e. these nodes are positioned early. The algorithm minoutdegree schedules
nodes with the minimum of the sum of incoming and outgoing edges first.
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— minbackward
Instead of calculating strongly connected components, minbackward performs a topo-
logical sorting to assign ranks to the nodes. This algorithm is fast if the graph is acyclic.

— lree
The tree algorithm is a specialized method for downward laid out (see p. 103). It is very
fast for these tree-like graphs and results in a balanced layout.

— forcedir
This layout algorithm computes a force-directed placement. It is a nonhierarchical lay-
out method that works well for undirected graphs. Some features of hierarchical layout
like near edges are disabled for this layout algorithm.

The layout calculation for this algorithm can be controlled via the following graph at-
tributes:

* Spring embedder forces

attraction (p. 52), repulsion (p. 68)

* QGravitational forces
gravity (p. 58)

* Simulated annealing
fdmax (p. 57),
tempmin, tempmax (p. 72),
temptreshold (p. 73), tempscheme (p. 72), tempfactor (p. 71)

* Random influence
randomfactor (p. 67), randomrounds (p. 67), randomimpulse (p. 67)

* Magnetic forces
magnetic_field1, magnetic_field2 (p. 64),
magnetic_forcel, magnetic_force2 (p. 65)

* Energy level
energetic (p. 56)
energetic attraction (p. 56), energetic repulsion (p. 56)
energetic gravity (p. 56), energetic crossing (p. 56)
energetic overlapping (p. 56), energetic border (p. 56)

* Boundary rectangle
border x (p. 53), border y (p. 53)

¢ layout_downfactor, layout_upfactor, layout_nearfactor
Type: integer
Default value: 1 for all three attributes
Attribute of: top-level graph, subgraphs
Description:
The layout algorithm partitions the set of edges into edges pointing upward, edges pointing
downward, and edges pointing sidewards. The last type of edges is also called near edges.
These attributes have no effect if the layout algorithm tree is used.
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If the layout_downfactor is large as compared to the layout_upfactor and lay-
out_nearfactor, then the positions of the nodes are mainly determined by the edges pointing
downwards.

If the layout_upfactor is large as compared to the layout_downfactor and lay-
out_nearfactor, then the positions of the nodes are mainly determined by the edges pointing
upwards.

If the layout_nearfactor is large, then the positions of the nodes are mainly determined by
the edges pointing sidewards.

level

Type: integer

Default value: none (corresponds to -1)

Attribute of: subgraphs

Description:

This attribute is a synonym for vertical_order (p. 74).

linear_segments

Type: yes, no

Default value: no

Attribute of: rop-level graph, subgraphs

Description:

yes switches linear segment layout on. This layout favors straight long vertical edges. See
also —1inseg options (p. ??) and —1insegmax (p. ??)

loc
Type: { x: <integer>y: <integer> }
Default value:
Top-level graph: { x:0 y:0 } for both
Subgraphs: unspecified for both
Attribute of: top-level graph, subgraphs
Description:
For details, see x (p. 75).

magnetic_field1, magnetic_field2

Type:
no, top_to_bottom, bottom _to__top, left_to_right, right_to_left,
polar, circular, orthogonal, polcircular

Default value: no

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

Magnetic fields are part of impulse calculation. Forces that originate from a simulation of a
spring embedder neglect the directions of edges. In directed graphs edges should point in a
uniform direction, consequently magnetic forces are introduced, with edges being interpreted
as magnetic needles that align according to a magnetic field.

Two independent magnetic fields are possible. These two attributes specify the kind of mag-
netic field for each. If two fields are specified, the edges are influenced by both. The attributes
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magnetic_forcel and magnetic_force2 (p. 65) influence the strength of each field.
For details, see p. 101.

magnetic_forcel, magnetic_force2

Type: integer

Default value: 1 for both

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

These two attributes specify the constant factors that are multiplied by the corresponding
magnetic forces of the two magnetic fields.

See also magnetic_field1 and magnetic_field2 (p. 64).
For details, see p. 101.

manhattan_edges

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

yes switches orthogonal layout on. Orthogonal layout (or Manhattan layout) means that all
edges consist of horizontal or vertical line segments. Vertical edge segments might be shared
by several edges, while horizontal edge segments are never shared. This results in aesthetic
layouts for flowcharts. If orthogonal layout is used, the priority phase and straight phase are
also used by default (see priorty_phase, p. 67 and straight_phase, p. 71).

margin

Type: integer

Default value: 0 if the value of borderwidth (p. 53) is zero, 3 otherwise

Attribute of: subgraphs

Description:

Specifies the horizontal and vertical offset between the border of a summary node and its
label in pixels. Useful for rectangular nodes only.

near_edges

Type: yes, no

Default value: yes

Attribute of: top-level graph, subgraphs

Description:

no: All near edges are treated as normal edges in the graph layout.

nodes

Type: yes, no

Default value: yes

Attribute of: top-level graph

Description:

Deprecated. no suppressed the drawing of nodes in the top-level graph and all nested sub-
graphs.
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e node_alignment

Type: top, center, bottom

Default value: center

Attribute of: top-level graph, subgraphs

Description:

For hierarchical layout this attribute specifies the vertical alignment of nodes at the horizontal
reference line of levels.

— top: The tops of all nodes of a level have the same y coordinate.
— center: All nodes of a level are centered.
— bottom: The bottoms of all nodes of a level have the same y coordinate.

orientation

Type: top_to_bottom, bottom__to_top, left _to_right, right_to_left

Default value: top_to_bottom

Attribute of: top-level graph, subgraphs

Description:

This attribute specifies the orientation of the graph. All explanations in this section are given
in relation to the default orientation.

outport-sharing

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs
Description:

See graph attribute port-sharing (p. 66).

pmin, pmax
Type: integer
Default value:

0 for pmin

100 for pmax
Attribute of: rop-level graph, subgraphs
Description:
pmin sets the minimum number of iterations of the pendulum method. Like crossing reduc-
tion, this method stops when the “imbalance weight” stops decreasing. However, an increase
in imbalance weight might be a local phenomenon, meaning that the imbalance might de-
crease much more after a few more iterations.

pmax sets the maximum number of iterations of the pendulum method. Reducing this factor
increases layout calculation speed.

port_sharing, inport_sharing, outport_sharing
Type: yes, no
Default value:

no (since aiSee 2.1.89) for port-sharing,

no for inport-sharing and outport-sharing
Attribute of: top-level graph, subgraphs
Description:
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no suppresses the sharing of ports by edges at nodes. inport-sharing enables the port sharing
of incoming edges only, with outport-sharing enabling the port sharing of outgoing edges
only.

Generally speaking, if multiple edges are adjacent to the same node, and the arrow heads of
all these edges have the same appearance (color, size, etc.), these edges may share a port at a
node. This means that only one arrow head is drawn, and all edges meet at this arrow head.
This enables many edges to be located adjacent to one node without getting confused by too
many arrow heads. If no port sharing is used, each edge gets its own port.

priority_ phase

Type: yes, no

Default value: no

Attribute of: rop-level graph, subgraphs

Description:

yes switches on the priority phase. This phase replaces the normal pendulum method with
a specialized method: It forces long vertical edges to be straight, just like the straight phase
(see p. 71). In fact, the straight phase is a fine-tuning of the priority phase, the priority phase
being recommended for an orthogonal layout (see manhattan_edges, p. 65).

randomfactor

Type: integer

Default value: 70

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

If randomized rounds have been specified (see randomrounds, p. 67) then a node is placed
with a probability of randomfactor percent during a round. This factor should be close to
100 in order to prevent the process from stopping too early.

For details, see p. 101.

randomimpulse

Type: integer

Default value: 32

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

It specifies the strength of the random impulse vector. If the forcedir algorithm should behave
like a simulated annealing algorithm, this constant should be large and a slow temperature
scheme should be chosen. Otherwise a small value is preferable for the randomimpulse
attribute.

For details, see p. 101.

randomrounds

Type: integer

Default value: -1

Attribute of: top-level graph
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Description:
This attribute only applies to the forcedir layout algorithm.

This attribute specifies the number of randomized rounds during impulse calculation. It
should only be used for the first few rounds so as to add a random impulse. Afterwards, the
random impulse would delay completion of calculation.

For details, see p. 101.

repulsion

Type: integer

Default value: 60

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

Here it is part of the force-directed spring embedder during repulsive impulse calculation. It
specifies the constant that is inversely proportional to the attractive forces acting on a node.

This constant and its attractive counterpart (see attraction on p. 52) enabled the length of
edges to be controlled. Usually the values for these two attributes are of the same order of
magnitude.

For details, see p. 101.

rmin, rmax

Type: integer

Default value:

0 for rmin

100 for rmax

Attribute of: top-level graph, subgraphs

Description:

rmin sets the minimum number of iterations for rubberbanding. This works in a manner
similar to the pendulum method.

rmax sets the maximum number of iterations for rubberbanding. Reducing this factor in-
creases layout calculation speed.

scaling

Type: a float value ; 0.0 or maxspect

Default value: 1.0

Attribute of: top-level graph, subgraphs

Description:

This attribute specifies the scaling factor for graph representation. A scaling factor of 1.0
means normal size. maxspect scales a graph so that the entire graph fits into the graph
window.

When specified for the top-level graph, this attribute determines the size of the entire graph
including all the subgraphs. When specified for a subgraph it determines the scaling factor
of the summary node of the folded subgraph. The size of a boxed subgraph is not affected,
however the size of the subgraph nodes may still be affected.

For details, see shrink/strech (p. 69).
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e shape
Type:
box, rhomb, ellipse, circle, triangle,
trapeze, uptrapeze, hexagon, Iparallelogram, rparallelogram
Default value: box
Attribute of: subgraphs
Description:
Specifies the shape of the summary node of a folded subgraph (see node attribute shape
(p. 82) for a description of shapes).

e shrink, stretch
Type: integer
Default value: 1 for both
Attribute of: top-level graph, subgraphs
Description:
These two attributes specify the shrinking and stretching factors for the representation of the
top-level graph. The scaling of the graph as a percentage is given by the formula ((stretch /
shrink) * 100).

For instance, (stretch, shrink) = (1, 1) or (2, 2) or (3, 3) or ... is normal size, (stretch, shrink)
= (1, 2) is half size, and (stretch, shrink) = (2, 1) is double size. The scaling factor can also
be specified via the scaling (p. 68).

— top-level graph
When these attributes are specified for the top-level graph, they determine the size of
the entire graph including all the subgraphs.

— subgraphs
When specified for a subgraph they determine the scaling factor of the summary node of
the folded subgraph. The size of a boxed subgraph is not affected, however the size of
the subgraph nodes may still be affected. For details, see node attribute shrink (p. 83).

e smanhattan_edges
Type: yes, no
Default value: no
Attribute of: top-level graph, subgraphs
Description:
yes selects a specialized orthogonal layout: All horizontal edge segments between two levels
share the same horizontal line, i.e. not only vertical edge segments are shared (as in the
Manhattan layout, see p. 65). However, horizontal edge segments are shared by several
edges, too. This looks nice for trees but might be confusing in general.

e smax
Type: integer
Default value: 100
Attribute of: top-level graph, subgraphs
Description:
This attribute sets the maximum number of iterations of the straight-line recognition phase.
This value is not of any use unless the straight-line recognition phase is switched on, see
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straight_phase on p. 71. It can be used to improve the Manhattan layout or the layout with
the priority phase turned on.

splinefactor

Type: integer

Default value: 70

Attribute of: top-level graph, subgraphs

Description:

This factor determines the bending of splines. A factor of 100 indicates very sharp bending,
a factor of 1 indicating very flat bending. Useful values range from 30 to 80. The default
value changes to 10 if manhattan edges are enabled.

splines

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

This attribute specifies whether splines are used to draw edges. Polygon segments are used
to draw edges by default, because this is faster. The spline drawing routine is quite slow.
Splines are mainly used to prepare high-quality PostScript output for small graphs.

spreadlevel

Type: integer

Default value: 1

Attribute of: top-level graph, subgraphs

Description:

This parameter only influences the tree algorithm. Spreading of the uppermost nodes of large
balanced trees would increase the width of the tree to such an extent that the tree would no
longer fit in a window. Consequently, the spread level specifies the minimum level (rank)
where nodes are spread. Nodes of levels above the spread level are not spread.

state

Type: boxed, clustered, exclusive, folded, unfolded, wrapped,

Default value: unfolded

Attribute of: subgraphs

Description:

This attribute specifies the initial state of a subgraph, i.e. it describes the way a subgraph is
displayed the first time a graph is visualized. The appearance of the subgraph (its state) can
be changed interactively later on (see p. 17).

— boxed
The subgraph is surrounded by a frame, i.e. drawn in a box. The nodes in side the
box are independent of the rest of the graph, i.e. there are no edges connecting nodes
outside the box with nodes inside the box and vice versa. For details, see p. 21.

— clustered
The subgraph is surrounded by a frame. In contrast to a box, edges from nodes outside
the frame are drawn to nodes inside the frame and vice versa. This is an experimental
feature. For details, see p. 21.
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— exclusive
The subgraph is shown exclusively. All other nodes of the graph are not visible. Only
edges between nodes of a group are visible. Of course, this value should appear only
once in a graph specification. For details, see p. ??.

— folded
The nodes of a subgraph are hidden. They are represented by a single node, called a
summary node. For details, see p. 20.

— unfolded
This is the default setting.

— wrapped
All nodes and edges belonging to the subgraph are wrapped using the same color. For
details, see p. 21.

straight_ phase

Type: yes, no

Default value: no

Attribute of: top-level graph, subgraphs

Description:

yes switches on the straight phase. This is an additional phase that tries to avoid bends in
long edges. Long edges are drawn as long straight vertical lines. Thus, this phase is not
very appropriate for normal layout, however it is recommended when an orthogonal layout
is selected (see manhattan_edges, p. 65).

stretch

Type: integer

Default value: 1

Attribute of: top-level graph, subgraphs
Description:

See graph attribute shrink (p. 69).

subgraph_label

Type: yes, no

Default value: yes

Attribute of: subgraphs

Description:

New. no switches off the displaying of the subgraph label when the subgraph is boxed or
clustered. If the subgraph is folded into a summary node, the label is still displayed.

subgraph_labels

Type: yes, no

Default value: yes

Attribute of: top-level graph

Description:

Deprecated. no switched off the displaying of subgraph labels globally.

tempfactor
Type: float
Default value: 1.3
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Attribute of: top-level graph
Description:
This attribute only applies to the forcedir layout algorithm.

It is used in the simulated annealing part of the algorithm. It specifies the temperature scheme
factor used for exponential and reverse exponential temperature schemes.

For details, see p. 101.

e tempmin
Type: integer
Default value: 1
Attribute of: top-level graph
Description:
This attribute only applies to the forcedir layout algorithm.

Here it is used in the simulated annealing part of the algorithm. It specifies the lower limit of
the temperature range.

For details, see p. 101.

e tempmax
Type: integer
Default value: 128
Attribute of: rop-level graph
Description:
This attribute only applies to the forcedir layout algorithm.

Here it is used in the simulated annealing part of the algorithm. It specifies the upper limit of
the temperature range.

For details, see p. 101.

e tempscheme
Type: integer
Default value: 1
Attribute of: top-level graph
Description:
This attribute only applies to the forcedir layout algorithm.

There are local and global temperature schemes. In global temperature schemes all nodes
have the same temperature.

— 1 (local temperature temp_speed)
Local adaptive temperature scheme with speedup during cooling.

— 2 (local temperature temp_normal)
Local adaptive temperature scheme with no speedup.

— 3 (global temperature temp_linear)
Linear curve.

— 4 (global temperature temp_hyperbolical)
Hyperbolic curve: very fast descent, then a low temperature for an extended period of
time
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— 5 (global temperature temp_ exponential)
Exponential descending temperature, i. e. a small temperature for an extended period of
time.

— 6 (global temperature temp_ logarithmic)
Logarithmic descending, i. e. a small temperature for an extended period of time.

— 7 (global temperature temp_reverse_exponential)
Reverse exponential descending temperature, i.e. a high temperature for an extended
period of time.

— 8 (global temperature temp_reverse_logarithmic)
Reverse logarithmic descent, i. e. a high temperature for an extended period of time.

For details, see p. 101.

temptreshold

Type: integer

Default value: 3

Attribute of: top-level graph

Description:

This attribute only applies to the forcedir layout algorithm.

Here it is used in the simulated annealing part of the algorithm. It specifies the threshold
value for the global temperature. The algorithm stops if the global temperature drops below
the value specified here.

For details, see p. 101.

textcolor
Type: black, blue, red, ...
Default value:
black for summary nodes
Attribute of: subgraphs
Description:
Specifies the color for text labels of summary nodes. For details on colors, see p. 90. See
also color (p. 54) and bordercolor (p. 53).

textmode

Type: center, left_justify, right_justify

Default value: center

Attribute of: subgraphs

Description:

This attribute specifies the alignment of text within a summary node frame.

title

Type: string

Default value: name of the graph specification file

Attribute of: subgraphs

Description:

This attribute specifies the name associated with the subgraph. If no title is specified the
name of the file containing the graph specification is used. Note: Titles have to be unique
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throughout a graph specification, meaning there can be only one subgraph at most without a
title specification.

The name of a subgraph is used to identify this graph, so that the subgraph can be the source
and target of an edge specification. These edges start or end at the summary nodes of folded
subgraphs. If the subgraph is visualized unfolded, these edges start or end at the root of the
subgraph or at the root of the first subgraph in the subgraph.

treefactor

Type: float

Default value: 0.5

Attribute of: top-level graph, subgraphs

Description:

The tree algorithm for downward laid-out trees tries to produce a medium dense balanced
tree-like layout. If the tree factor is greater than 0.5, the tree edges are spread, i.e. they
have a larger gradient, this possibly improving the readability of the tree. Note: It is not
obvious whether spreading results in a denser or wider layout. A tree factor exists for each
tree, enabling maximu density of the entire tree.

useractioncmdl, useractioncmd?2, useractionemd3, useractioncmd4

Type: string

Default value: empty string for all four

Attribute of: top-level graph

Description:

These attributes enable four commands to be specified in a graph specification, that are exe-
cuted in the User Action Mode. In this aiSee version, only User Action 3 is supported.

For details on user actions, see section User Actions (p. 24) and also be refered to userac-
tionname on p. 74.

useractionname

Type: integer : string

Default value: 1 : “User Action 17, 2 : “User Action 27, 3 : “User Action 3”,
4 : “User Action 4”

Attribute of: top-level graph

Description:

This attribute enables names for the user actions to be introduced.

These names are currently unused. In future versions, they could be used to refer to particular
user actions in various submenus.

For details on user actions, see section User Actions (p. 24) and useractioncmd on p. 74.

vertical_order

Type: integer or maxlevel

Default value: none (corresponds to -1)

Attribute of: subgraphs

Description:

In a hierarchical layout, this attribute specifies the vertical position of a summary node of
a folded subgraph. maxlevel tries to position the node as the maximum calculated level.
Generally for all nodes, their vertical position is called their level or rank (see p. 103). level
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is a synonym for vertical_order.

All nodes of level 0 form the uppermost layer (the first layer), if the orientation is top-down.
Nodes of level 1 form the second layer, etc.

The level specification is not in effect unless automatic layout is being calculated. Layout
is calculated automatically if there is at least one node without a specified location (see loc
attribute for nodes (p. 81) and summary nodes (p. 64).

Note: The level specification may conflict with a near edge (p. 31) specification, because
the source and target node of a near edge have to have the same level. In this case, the level
specification of the source or the target node of the near edge is ignored.

width

Type: integer

Default value:
Top-level graph: (width of root screen — 100) pixels
Subgraphs: (width of the label for summary nodes) pixels

Attribute of: top-level graph, subgraphs

Description:

The meaning of this attribute depends on its location.

— top-level graph This attribute specifies the width of the display window in pixels.
— subgraphs Here it specifies the width of the summary node in pixels.

See also graph attribute height (p. 58)

X,y
Type: integer
Default value:
Top-level graph: 0O pixels for both
Subgraphs: unspecified for both
Attribute of: top-level graph, subgraphs
Description:
Deprecated. The meaning of these attributes differs depending on whether they are specified
for the top-level graph or for subgraphs.

— top-level graph
Here these attributes specify the position of the graph window in relation to the root
screen, i.e. the x and y coordinates of the upper left corner of the graph window are
specified in pixels. The origin of the root screen is in the upper left corner.

— subgraphs
Here they specify the x and y coordinates (in pixels) of the summary node in relation to
the upper left corner of the graph window.
The positions can also be specified via the loc attribute (p. 64).
xbase, ybase
Type: integer
Default value: 5 pixels for both attributes
Attribute of: rop-level graph, subgraphs
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Description:

xbase, ybase specify the horizontal and vertical offset between the graph window and the
upper left-hand corner of the graph, i.e. the position of the origin of the coordinate system
in relation to the upper left-hand corner of the virtual window.

In subgraph specifications they are the offsets from the frame of the box containing the sub-
graph.

Xmax, ymax
Type: integer
Default value:

(width of the root screen — 90) pixels for xmax

(height of the root screen — 90) pixels for ymax
Attribute of: top-level graph
Description:
Deprecated. These attributes specified the maximum size of the virtual window used to
display the graph (see Figure 5.18). This is usually larger than the displayed part. The width
and height of the displayed part cannot be larger than xmax and ymax. Only the parts of
the graph inside the virtual window are drawn. The virtual window can be moved over the
potentially infinite coordinate system by special positioning commands (see p. 13).

Note: It is advisable to set xmax, ymax so they do not exceed the size of the root screen so
as to get good performance.

xraster, yraster

Type: integer

Default value: 1 pixel

Attribute of: top-level graph, subgraphs

Description:

These attributes specify the horizontal and vertical raster distance for the position of nodes.
The center of a node is aligned to this raster.

xlraster

Type: integer

Default value: 1 pixel

Attribute of: top-level graph, subgraphs

Description:

This attribute is the horizontal raster for the positions of the line control points (the dummy
nodes). It should be a divisor of xraster.

xIspace
Type: integer
Default value:
(%xspace)pixels, if polygons are used for edge drawing
(%yspace) pixels, if splines are used
Attribute of: top-level graph, subgraphs
Description:
This attribute describes the horizontal distance between lines at the points where they cross
levels. Note: It is advisable to set xIspace to a larger value, if splines are used in order to
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prevent sharp bends.

e Xxspace,yspace
Type: integer
Default value:
20 pixels for xspace,
70 pixels for yspace
Attribute of: top-level graph, subgraphs
Description:
xspace, yspace specify the minimum horizontal and vertical distance between nodes.
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5.8 Node Attributes

This section describes the entire list of node attributes. Each attribute is listed together with its
type and default value.

bordercolor

Type: black, blue, red, ...

Default value:

Same as the value of the textcolor attribute for nodes

Attribute of: node

Description:

Specifies the color for node borders. For details on colors, see p. 90. See also node attributes
color (p. 78) and textcolor (p. 83).

borderstyle

Type: continuous, dashed, dotted, double, invisible, solid, triple

Default value: continuous

Attribute of: subgraphs

Description:

This attribute specifies the line style used for drawing the borders of a node. See also edge
attribute linestyle (p. 87).

borderwidth

Type: integer

Default value: 2 pixels

Attribute of: node

Description:

This attribute specifies the width of the border of a node in pixels.

color

Type: black, blue, red, ...

Default value: white or transparent

Attribute of: node

Description:

Here the color attribute specifies the background color of a node. For details on colors, see
p. 90. See also node attributes textcolor (p. 83) and bordercolor (p. 78).

focus

Type: no type

Default value: no value

Attribute of: node

Description:

This attribute sets the focus for the node for which it is specified. After startup this node is
centered in the graph window.

Note: the focus can also be specified for summary nodes (see graph attribute focus, p. 57). It
goes without saying that the focus attribute should appear only once in a graph specification.

fontname
Type: string

78



‘.\

5.8 Node Attributes

Default value: default font is drawn by turtle graphics routines

Attribute of: node

Description:

This attribute specifies a pixel font different from the default font and used for drawing the
text labels of summary nodes. The font is given by the name of the aiSee font file con-
taining the font description, for example a 12-point Times Roman font can be specified via
fontname: "timR12". Note: If the font file is not in the current directory the environ-
ment variable ATSEEFONTS has to be set to the directory containing the font description
files. For details on fonts, see p. 92.

e height
Type: integer
Default value: (node label height) pixels
Attribute of: node
Description:
This attribute specifies the height of a node including the border. See also node attribute
width (p. 84).

e horizontal_order
Type: integer
Default value: none (corresponds to —1)
Attribute of: node
Description:
In a hierarchical layout, this attribute specifies the horizontal position of a node within a
level (see node attribute vertical_order, p. 84). Nodes specified by horizontal positions are
ordered according to these positions within levels. Nodes without this attribute are inserted
in this ordering by the crossing reduction mechanism (see p. 105).

Note: Connected components are handled separately during crossing reduction, thus it is not
possible to intermix nodes of different connected components in one ordering sequence. For
example, one connected component consists of nodes A, B, C and another one of nodes D
and E, which are all positioned at the same level. Then, for instance, it is not possible to
specify the following horizontal order at level O: A, D, C, E.

Note further: If the algorithm for downward laid-out trees is used, the specified horizontal or-
der is only retained within nodes that are children of the same node, i. e. in case of downward
laid-out trees it is not possible to specify a horizontal order for the entire level.

e iconfile
Type: string
Default value: no default value
Attribute of: node
Description:
This attribute specifies the bitmap file (format: raw PBM, PPM) to be displayed in the node.
Note: If the bitmap file to be displayed is not in the current directory the environment variable
AISEEICONS can be set to the directory containing the bitmap file. For details on pictures
in nodes, see p. 91.

e importance
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Type: integer

Default value: 0 (which means infinity)

Attribute of: node

Description:

Deprecated. This was the central attribute when it came to filtering in fish-eye views as
it enabled the importance of a node to be specified via an integer. Low integers signified
less important nodes which were filtered out first by a filtering fish-eye view. High integer
numbers signified nodes that were important, them being rarely filtered out. A value of 0
represented an infinite importance, the result being that these nodes were never filtered out.
This attribute also existed for summary nodes of folded subgraphs, see importance (p. 60).

infol, info2, info3

Type: string

Default value: empty string for all three

Attribute of: node

Description:

These attributes enable three additional text fields to be specified for a node. The same set
of attributes exists for summary nodes (see node attribute infol, p. 60). These additional
information fields can be selected interactively from the submenu of the Information menu
(see p. 2?).

When exporting a graph to SVG (or HTML), a URL can be specified in the info3 field of a
node that is visited when the user clicks on that node in the SVG (or PNG or BMP) image.
The URL specification has to be in the format info3: "href:URL", meaning that if the
content of an info3 field does not start with href:, it will be interpreted as a normal
information field rather than as a hyperlink.

In addition to a URL, the following optional hyperlink attributes can be specified:
— target
— onMouseOver
— onMouseOut
— onMouseDown
— onMouseUp
— onMouseMove

— onClick

These attributes can be specified in any order directly after the URL itself. The specifications
must be separated by semicolons. Examples:

info3: "href:http://www.aisee.com/svg/"

info3: "href:javascript:myfunction(42,’Hello world!’)"

info3: "href:http://www.alisee.com;target:_blank;onClick:foo('bar’)"
info3: "href:#; onMouseOver:foo(l); onMouseOut:foo (0)"

As of aiSee 2.1.96, the URL specification can be omitted:
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info3: "onMouseOver:foo (1) ; onMouseOut:foo (0)"

If aiSee spots a mouse event handler specification in the GDL source of a graph, it automati-
cally includes a reference to an external JavaScript file when exporting the graph to SVG:

<svg:script xlink:href="SVGFileName.js" language="JavaScript">
</svg:script>

This allows JavaScript functions and global variables to be conveniently specified in the
external JS file rather than in the SVG file itself. Thanks to this approach, you can easily
make changes to your graphs and re-export them to SVG without having to copy & paste
JavaScript code from old SVG files into new ones each time.

invisible

Type: yes, no

Default value: no

Attribute of: node

Description:

Hides a node after computing the layout.

label

Type: string

Default value: empty string

Attribute of: node

Description:

This string is displayed inside a node. If no label is specified the value of the node attribute
title is used.

Note: This string may contain control characters, e.g. “\n” (newline character), that influ-
ence the size of the node. See p. 94 for more details.

level
This is a synonym for vertical_order.

loc

Type: { x: <integer>y: <integer> }

Default value: no default value

Attribute of: node

Description:

This attribute specifies the location of the node, i.e. the x and y coordinates in relation to
the coordinate system of the graph. The origin is in the upper left corner. For example, the
specification loc: { x: 100 y: 200 } placesanode atlocation (100, 200) in the
coordinate system.

The location of nodes are not valid unless locations are specified for all nodes, otherwise
aiSee calculates appropriate x and y coordinates according the layout algorithm chosen.

margin
Type: int
Default value:
3, if borderwidth (p. 78) > 0
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0, if borderwidth = 0
Attribute of: node
Description:
Specifies the horizontal and vertical offset between the border of a node and its label in pixels.
Useful for rectangular nodes only.

scaling

Type: float ; 0.0

Default value: 1.0

Attribute of: node

Description:

This attribute specifies the scaling factor of a node. To completely hide a node, use the
attribute invisible (p. 81). For further details, see node attribute shrink (p. 83).

shape
Type:
box, rhomb, ellipse, circle, triangle,
trapeze, uptrapeze, hexagon, Iparallelogram, rparallelogram
Default value: box
Attribute of: node
Description:
This attribute specifies the frame shape of a node.
Note: Drawing ellipses is slower than drawing other shapes.

— box

— circle

— ellipse

— hexagon

— Iparallelogram

~_parallelogram

— rhomb

— rparallelogram

rparallelogram __—
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— triangle

— trapeze
— uptrapeze

~_Uptrapeze ~

shrink, stretch

Type: integer

Default value: 1 for both

Attribute of: node

Description:

These attributes specify the shrinking and stretching factor of a node. The values of the node
attributes width, height, borderwidth and the size of the label is scaled by ((stretch / shrink)
* 100) percent. The scale value can also be specified by the node attribute scaling (p. 82).

Note: The actual scaling factor of a node is determined by the scale factor of a node in
relation to the scale factor of the graph, i.e. if the scaling factor for the graph is (stretch,
shrink) = (2, 1) and (stretch, shrink) = (2, 1) for the node, the node is scaled by a factor of 4
as compared to normal size.

textcolor

Type: black, blue, red, ...

Default value: black

Attribute of: node

Description:

Specifies the color for text labels of nodes. For details on colors, see p. 90. See also node
attributes color (p. 78) and bordercolor (p. 78).

textmode

Type: center, left_justify, right_justify

Default value: center

Attribute of: node

Description:

This attribute specifies the alignment of text within a node frame.

title

Type: string

Default value: no default

Attribute of: node

Description:

This specifies the unique string identifying the node. This attribute is mandatory for the node
specification.

useractioncmd3Type: string
Default value: empty string
Attribute of: node
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Description:
This attribute enables a command to be specified for a node that can be executed in the User
Actions Mode by selecting the node and pressing 3.

For details on user actions, see section User Actions (p. 24).

vertical order

Type: integer or maxlevel

Default value: none (corresponds to -1)

Attribute of: node

Description:

In a hierarchical layout, this attribute specifies the vertical position of a node. maxlevel
tries to position the node at the maximum calculated level. Generally speaking, the verti-
cal position of nodes is called level or rank (see p. 103), with level being a synonym for
vertical_order.

All level 0 nodes form the uppermost layer (the first layer), if the orientation is top-down.
Level 1 nodes form the second layer, etc.

The level specification is not in effect unless if an automatic layout is being calculated. The
layout is calculated automatically if there is at least one node without a specified location
(see loc attribute for nodes (p. 81) and summary nodes (p. 64).

Note: The level specification may conflict with a near edge (p. 31) specification, because
the source and target node of a near edge have to have the same level. In this case, the level
specification of the source or target node of the near edge is ignored.

width

Type: integer

Default value: (node label width) pixels

Attribute of: node

Description:

This attribute specifies the width of a node including the border. See also height node at-
tribute (p. 79).
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5.9 Edge Attributes

This section describes the whole list of edge attributes. Each attribute is listed together with its
type and default value.

e anchor
Type: integer
Default value: no default value
Attribute of: edge
Description:
An anchor point describes the vertical position in a node where an edge starts. This is useful if
node labels are several lines long and outgoing edges are related to label lines. (For instance,
this allows a nice visualization of structs containing pointers as fields). A node with anchored
edges can only have one near edge at maximum. Further, if anchored edges occur, the graph
orientationisalways top_to_bottom.

e arrowcolor, backarrowcolor
Type: black, blue, red, ...
Default value: value of the color attribute for both
Attribute of: edge
Description:
Respectively the color of the arrow head or backarrow head. For details on colors, see p. 90.
See also edge attributes textcolor (p. 88) and color (p. 86).

e arrowsize, backarrowsize
Type: integer
Default value:
10 pixels for the arrowsize and
0 pixels for the backarrowsize
Attribute of: edge
Description:
The arrow head is a right-angled, isosceles triangle. These two attributes respectively specify
the length of the cathetuses of the arrow head and back arrow head.
e arrowstyle, backarrowstyle
Type: “none”, “’solid”, "line”, circle”, ...
Default value:
“solid” for the arrowstyle and
“none” for the backarrowstyle
Attribute of: edge
Description:
Each edge has two arrow heads, one arrow head pointing to the target node, called normal
arrow head, and the other one “pointing” to the source node, called back arrow head. arrow-
style is the style of the normal arrow head and backarrowstyle the style of the back arrow
head. The styles are:

— 77none’9
No arrow head is drawn.
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— solid”
Arrow head is a triangle filled with arrowcolor, or the edge color if no arrowcolor is
specified.

— "line”
Arrow head is not filled and drawn without the hypotenuse of the triangle forming the
head.

— “circle”
Arrow head is a circle.

— ”filled circle”
Arrow head is a circle filled with arrowcolor, or the edge color if no arrowcolor is
specified.

— "half circle”
— "half filled circle”
- "box”
— “filled box”
— "half box”
— "half filled box”
- “rhomb”
- filled rhomb”
— "half rhomb”
— "half filled rhomb”
— “diamond”
— "half diamond”
— 7slash”
— 7dslash”
The default edges have a solid arrow head and no back arrow head.

e class
Type: integer
Default value: 1
Attribute of: edge
Description:
This attribute specifies the edge class to which an edge belongs. For details, see p. ?? and the
grouping of nodes in general (p. 17).

e color
Type: black, blue, red, ...
Default value: black
Attribute of: edge
Description:
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Here the color attribute specifies the color of the edge. For details on colors, see p. 90. See
also edge attributes textcolor (p. 88) and arrowcolor (p. 85).

e fontname
Type: string
Default value: default font is drawn by turtle graphics routines
Attribute of: node
Description:
This attribute specifies a pixel font which is different from the default font and to be used
for drawing the edge labels. This font is given by the name of the aiSee font file that con-
taining the font description, for example a 12-point Times Roman font can be specified via
fontname: "timR12". Note: If the font file is not in the current directory the environ-
ment variable AISEEFONTS has to be set to the directory containing the font description
files. For details on fonts, see p. 92.

e horizontal order
Type: integer
Default value: unspecified
Attribute of: edge
Description:
In a hierarchical layout, this attribute specifies the horizontal position of long edges. This is
only of interest if an edge crosses several levels (see node attribute horizontal_order, p. 79).
This attribute specifies the point where the edge crosses the level.

The nodes specified by horizontal positions are ordered according to these positions within a
level. The horizontal position of a long edge crossing a level specifies the two nodes of the
level between which the edge has to be drawn. Other edges not possessing this attribute are
inserted in this ordering by the crossing reduction mechanism (see p. 105).

e label
Type: string
Default value: empty string
Attribute of: edge
Description:
This attribute specifies the text label of an edge. It is drawn if the graph attribute dis-
play_edge_labels (p. 55) is set to yes.

Note: This string may contain control characters, e. g. \n (newline character), that influence
the size of the label. See p. 94 for more details.

e linestyle
Type: continuous, dashed, dotted, double, invisible, solid, triple
Default value: continuous
Attribute of: edge
Description:
This attribute specifies the style in which an edge is drawn. The following possibilities are
offered:

— continuous
The edge is drawn as a solid line (——).
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— dashed
The edge consists of single dashes (——-).

— dotted
The edge consists of single dots ( --- ).

— double

The edge consists of a solid double line (=—=).
— invisible

The edge is not drawn. The attributes of its shape (color, thickness) are ignored.
- solid

The edge is drawn as a solid line (same as continuous parameter).

— triple
The edge consists of a solid triple line (=)

priority

Type: integer

Default value: 1

Attribute of: edge

Description:

The positions of the nodes are mainly determined by the incoming and outgoing edges. The
edges can be imagined as rubberbands pulling a node to its position. The priority of an edge
corresponds to the strength of the imaginary rubberband acting on it.

source

Type: string

Default value: no default

Attribute of: edge

Description:

This attribute specifies the title of the source node of an edge. It is mandatory for the edge
specification.

target

Type: string

Default value: no default

Attribute of: edge

Description:

This attribute specifies the title of the target node of an edge. It is mandatory for the edge
specification.

textcolor

Type: black, blue, red, ...

Default value: value of the color attribute

Attribute of: edge

Description:

Specifies the color of the text label of an edge. For details on colors, see p. 90. See also node
attributes color (p. 86) and arrowcolor (p. 85).

thickness

88



5.9 Edge Attributes

Type: integer

Default value: 2

Attribute of: edge

Description:

Specifies the thickness of an edge.
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5.10 Colors

aiSee has a color map of 256 colors of which 254 can be used. The first 32 colors (index 0 — 31) of
the color map are the default colors. These colors can be specified by name, all other colors being
specified by their color map index number. The color map is changed by specifying a sequence of
color entry attributes. For instance,

colorentry 32: 210 218 255 // alice blue
colorentry 33: 205 92 92 // indian red
colorentry 34: 46 139 87 // sea green

99 Cey

introduce the colors “alice blue”, “indian red” and “sea green” with color index 32, 33 and 34. If
blue, a default color, is to be used specification can be done via color: blueorcolor: 1.In
order to use sea green as a node color, color: seagreen cannot be specified since “seagreen”
is unknown to aiSee as a name. Its index number color: 34 has to be specified instead.

The default colors can be overwritten, however this is even more tricky. Specifying

colorentry 1: 210 218 255 // alice blue
colorentry 2: 205 92 92 // indian red
colorentry 3: 46 139 87 // sea green

causes the default colors blue, red and green to be overwritten. Now if color: blue is specified,
the color alice blue appears.

Table 5.1 shows the default color map.

’ No. Colorname RGB triple \ No. Colorname  RGB triple
0  white 255 255 255 | 16 lightblue 128 128 255
1 blue 0 0 255 | 17 lightred 255 128 128
2 red 255 0 0| 18 Ilightgreen 128 255 128
3 green 0 255 0| 19 lightyellow 255 255 128
4  yellow 255 255 0| 20 lightmagenta 255 128 255
5 magenta 255 0 255 | 21 lightcyan 128 255 255
6 cyan 0 255 255 | 22 lilac 238 130 238
7  darkgrey 85 85 85| 23 turquoise 64 224 208
8 darkblue 0 0 128 | 24 aquamarine 127 255 212
9 darkred 128 0 0| 25 khaki 240 230 140
10  darkgreen 0 128 0| 26 purple 160 32 240
11 darkyellow 128 128 0| 27 yellowgreen 154 205 50
12 darkmagenta 128 0 128 | 28 pink 255 192 203
13 darkcyan 0 128 128 | 29 orange 255 165 0
14 gold 255 215 0| 30 orchid 218 112 214
15  lightgrey 170 170 170 | 31 black 0 0 0

Table 5.1: Color Codes of the Default Color Map

Table 5.2 lists the color attributes available in GDL.
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Name Attribute of Default value ‘
color Nodes, top-level graph background, sub- white

graph background, summary nodes
color Edges, summary edges black
textcolor Nodes, subgraphs, summary nodes black
bordercolor Nodes, subgraphs, summary nodes The value of textcolor
arrowcolor Edges, summary edges The same color as the edge itself
backarrowcolor Edges, summary edges The same color as the edge itself

Table 5.2: GDL Color Attributes

Though there is no attribute for specifying the background color of additional node information
windows, it should be noted that this color is not bound to the RGB constant 255 255 255, but
rather to the value of the first entry of the color map (which happens to be 255 255 255 by
default). Thus, for example, specifying

colorentry 0: 210 218 255

sets the background color for all additional node information windows to alice blue. However, this
color then also appears everywhere else where the color white is used, so you might have to also
specify

colorentry 32: 255 255 255

and use the color number 32 instead of white.

The ASCII formfeed character \ £ (see p. 94) followed by two digits signifying a color changes the
color for the characters following in a string, thus enabling the first 100 colors of the color map to
be accessed.

5.11 lcons and Additional Fonts

5.11.1 Icons

Instead of text labels, aiSee also offers the option of displaying icon files in nodes. The icon files
have to be in PNG, PBM, PGM, or PPM format (raw). They can be attached to summary nodes
or ordinary nodes by using the iconfile attribute in subgraph (p. 60) or node (p. 79) specifications.
Note: In order to prevent the title text from being drawn over the icon displayed, the label attribute
of the node or summary node has to be set to the empty string, i.e. label: "".

The search path for the icon files can be specified by the environment variable ATSEEICONS.

Some additional graph attributes influence the drawing of icons, see icons (p. 60), fast_icons
(p. 57) and iconcolors (p. 59).
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5.11.2 Fonts

Apart from the default font, aiSee offers the fonts described in Table 5.3.

These pixel fonts are compatible with Adobe PostScript fonts. When exporting aiSee files to
PostScript, the original PostScript fonts can be used (providing your PostScript printer is equipped
with these fonts available).

They can be specified by the fontname attribute for summary nodes (p. 58), ordinary nodes (p. 78),
and edge labels (p. 87). The string value of this attribute is the font file name of the font to be used.
The font file name is composed of the file name base and size:

fontname: <filename_base><size>

The available font sizes are: 8, 10, 12, 14, 18 and 24 points. For example, a size 12 Times Roman
font is specified via fontname: "timR12".

’ Filename base \ Corresponding PostScript font

courB Courier Bold

courBO Courier Bold Oblique

courO Courier Oblique

courR Courier

helvB Helvetica Bold

helvBO Helvetica Bold Oblique

helvO Helvetica Oblique

helvR Helvetica

timB Times Bold

timBI Times Bold Italic

timI Times Italic

timR Times Roman

symb Symbol

ncenB New Century Schoolbook Bold
ncenBI New Century Schoolbook Bold Italic
ncenlI New Century Schoolbook Italic
ncenR New Century Schoolbook

Table 5.3: Available aiSee Pixel Fonts

The search path for the aiSee font files can be specified by the environment variable ATSEEFONTS.

5.11.3 Compatibility with SVG
We highly recommend using the bitmap fonts when exporting graphs to SVG format. The stan-

dard vector font is translated into <1 ine> elements, whereas the bitmap fonts are translated into
<text>. SVG treats <text > as text rather than outlines, enabling the user to search SVG images
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for node labels by using the Find dialog in the SVG viewer. Also, when bitmap fonts are used, the
output SVG file is much smaller and loads much faster.

An iconfile specification is translated into an <image> element. The <image> element indicates
to the SVG viewer used that the contents of the icon file specified are to be rendered into a given
rectangle within the current user coordinate system. SVG viewers usually support at least PNG,
JPEG and SVG format icon files.

Tables 5.4 and 5.5 show how the various bitmap fonts are translated into SVG.

’ Filename base \ SVG font-family ‘

courB "Courier New-Bold"

courBO "Courier New-BoldOblique"
courO "Courier New-Obligque"
courR "Courier New"

helvB "Helvetica-Bold"

helvBO "Helvetica—-BoldOblique"
helvO "Helvetica-Oblique"

helvR "Helvetica"

timB "Times-Bold"

timBI "Times—-BoldItalic"

timI "Times—-Italic"

timR "Times"

symb "Symbol"

ncenB "NewCenturySchlbk-Bold"
ncenBI "NewCenturySchlbk-BoldItalic"
ncenl "NewCenturySchlbk-Italic"
ncenR "NewCenturySchlbk"

Table 5.4: aiSee Pixel Fonts and the Corresponding SVG Fonts

| GDL font size | SVG font-size |

08 "10"
10 nion
12 "14n
14 "l6"
18 "20"
24 "26"

Table 5.5: aiSee Pixel Font Sizes and the Corresponding SVG Font Sizes
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Table 5.6: ISO Latin 1 Character Set

5.12 Character Set

It is possible to switch the text colors or underlining within text output, e.g. drawing of labels
or info fields. This is controlled by special characters in the strings. Note: The ASCII value of
the control characters depends on the operating system and C compiler. The following control

characters are allowed:

e "\n" (ASCII code 10)

Newline: drawing of text continues at the beginning of the next line.

e "\t" (ASCII code 9)

Tab: corresponds to eight space characters.

e "\a" (ASCII code 7)

Beep: produces an audible or visible alert. The position of the next character is not to be

changed.
e "\b" (ASCII code 8)

Sl
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5.13 Remarks

Backspace: goes one character back and continues drawing there.

o "\f" (ASCII code 12)
Formfeed: is used in combination with an additional parameter to change the current form of
output.

— "\fu" (ASCII codes 12 117) starts underlining.

— "\fI" (ASCII codes 12 73) starts italics typeface.

— "\£fb" (ASCII codes 12 98) starts bold typeface.

— "\£B" (ASCII codes 12 66) starts very bold typeface.

— "\fn" (ASCII codes 12 110) stops underlining, italics and bold typefaces, i. e. returns
to normal typeface.

— Selecting special characters
aiSee now supports UTF-8. However, for backwards compatibility reasons, certain

special characters (all characters of the ISO Latin 1 character set) can also be “encoded”
rather than entered directly, as specified in table 5.6. For example:

* "\£1223" (ASCII codes 12 105 50 50 51) prints the ISO character 223 (the Ger-
man B).

* "\£1252" (ASCII codes 12 105 50 53 50) prints the ISO character 252 (the Ger-
man ii).

— Changing of current color for drawing characters The formfeed character followed
by two digits signifying the color chosen from table 5.1 changes the color for the char-
acters following in a string, thus enabling the first 100 colors of the map to be accessed.
Example:

* "\f00" (ASCII codes 12 48 48) sets the color to white
* "\£31" (ASCII codes 12 51 49) sets the color to black

5.13 Remarks

All titles of graphs and nodes have to be unique.

A node can only have two near edges. If more than two near edges are specified for a node, the
remaining near edges are converted into normal edges.

A node with anchored edges can only have one near edge at maximum. Further, if anchored edges
occur, the orientation is always top_to_bottom.

The level of nodes (also of summary nodes) is not recognized unless the whole graph is drawn
automatically, menaing unless at least one node has no specified location. Normally, all level 0
nodes form the uppermost layer, with nodes of other levels forming the next layer underneath. The
level specification may conflict with a near edge specification, because the source and target node
of a near edge have to have the same level. In this case, the level specification of the source or
target node of the near edge is ignored.
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5.14 GDL's Grammar

This section presents the grammar of GDL (Graph Description Language) in EBNF (Extended
Bacchus Naur Form).

e Terminals are enclosed in “double quotes” and printed in bold.

e Nonterminals are written in italics

e Finite iterations are specified by (...)*

graph
graph__entry

graph__attribute

node_defaults
edge_defaults
foldnode__defaults
foldedge_defaults
node

edge

backedge
nearedge
Inearedge
rnearedge
bentnearedge
lbentnearedge
rbentnearedge
region
node__attribute
edge__attribute
region__attribute

: “graph: {” (graph_entry)* “}”

graph__attribute
graph

node

edge
node__defaults
edge_defaults
foldnode__defaults
foldedge__defaults
backedge
nearedge
Inearedge
rnearedge
bentnearedge
lbentnearedge
rbentnearedge
region

L)

. graph_attribute_name “:” attribute_value
graph__attribute_name
. “node.”’node__attribute

: “‘edge.”’edge_attribute

: “foldnode.”’node_attribute

. “foldedge.”edge_attribute

: “node: {” (node_attribute)* “}”

. “edge: {” (edge_attribute)* “}”

: “backedge: {” (edge_attribute)* “}”

: “nearedge: {” (edge_attribute)* “}”

: “leftnearedge: {” (edge_arttribute)* “}”

: “rightnearedge: {” (edge_attribute)* “}”
: “bentnearedge: {” (edge_attribute)* “}
: “leftbentnearedge: {” (edge_attribute)* “}”

: “rightbentnearedge: {” (edge_attribute)* “}”
. “region: {” (region_attribute)* “}”

any attribute listed in section 5.7

2

[T3%1}

. node__attribute_name “:” attribute_value

AL

. edge_attribute_name 3" attribute_value

99 6690

. “‘source” “:” string_list

“target” “:” string_list
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5.15 Animation of layout phases (aka smooth transitions)

| “state” “:” enum_status
| “class” “:” integer_list
| “range” “:” integer_value

node__attribute_name : any attribute listed in section 5.8
edge_attribute_name : any attribute listed in section 5.9
attribute_value . integer_value

| float_value

| string_value

| enum_value

integer_list . (integer_value)*

integer_value : any integer constant in C style

float_value : any float constant in C style

string_list . (string_value)*

string_value . " (character)* “"”

enum_value : any possible key word value for a graph, node or edge attribute
enum__status : any possible key word value for the graph attribute state (see p. 70)
character : any printable ASCII character

Note that graph :, node: and edge:, etc. are keywords. Therefore, no whitespace' character
is allowed before these colons.

Integers are sequences of digits. Floating point numbers consist of a sequence of digits followed
by a dot ‘., followed by a sequence of digits. C style comments (/* ... /) and C++ style
comments (// . . .) are allowed.

5.15 Animation of layout phases (aka smooth
transitions)

If a new layout is calculated for a graph and if animation of layout phases is turned on, the nodes
move smoothly from their initial positions in the layout to the newly calculated ones, enabling the
user to keep visual track of layout changes. The GDL graph attribute amax: <Int> specifies
the maximum number of animation steps. Specifying O means animation is turned off.

A whitespace is a blank, tab, linefeed or newline character
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Figure 5.17: Development of Shells
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5.15 Animation of layout phases (aka smooth transitions)
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6 Overview of the Layout Phases

The task of aiSee is to parse a graph specification, calculate a layout according to the layout
algorithm chosen, and draw the resulting layout in a window. The specification given as input
to aiSee is a readable ASCII text. The output window can be used to browse through the graph,
shrink or magnify the graph, fold parts of the graph, and export the graph to a bitmap or PostScript
file. Graph folding potentially results in a new layout of the graph. The layout can be extensively
influenced by edge, node and graph attributes or by different layout algorithms. aiSee offers force-
directed and hierarchical layout schemes.

6.1 Parsing

The first phase is to parse the specification and construct internal data structures representing the
graph. The specification may contain attributes denoting initially folded parts of the graph.

6.2 Grouping of Nodes and Edges — Folding Phase

aiSee offers various ways of grouping nodes and edges (see p. 17).

Folding a graph enables the graph to be inspected in a more efficient manner. Folding the unimpor-
tant parts gives the more important parts more space for visualization. Folding parts of the graph
also improves aiSee’s performance. It should be noted that nested foldings are possible.

In graph specifications, the folding of regions or subgraphs may interfere with the hiding of edges.
In this case, first the summary node of the folded region or subgraph is calculated, followed by
hiding the edges.

6.3 Force-Directed Layout

Force-directed layout schemes are usually selected for undirected graphs, this being ideal for sim-
ulating physical and chemical models.

aiSee combines the following four ideas in its force-directed layout algorithm:

e Spring forces
A spring embedder is simulated. The nodes of a graph are regarded as electrically charged
particles that repel one another, the edges being regarded as springs connecting the particles.
Particles that are far away from one another attract each another by spring forces, particles
that are too close repel one another.
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e Magnetic forces
Spring forces do not take the direction of edges into account. In directed graphs all edges
should have a uniform direction to point in. Here the edges are interpreted as magnetic
needles that align themselves according to a magnetic field.

e Gravitational forces
The problem with spring forces is that they are only effective in connected graphs. In uncon-
nected graphs simulating a spring embedder makes unconnected nodes move away from one
another as there are only repulsive forces but no attractive forces. That is why gravitational
forces are introduced. All nodes are attracted to the bary center of all the other nodes.

e Simulated annealing
The simulated annealing model is oriented to the physical process of annealing, which often
leads to very regular structures (e.g. like crystals).

A global energy level is computed for a graph which is the sum of all energy levels of the
nodes. The energy level at a node is determined from the forces acting it, much like the
elongation of the springs. The spring embedder tries to minimize the global energy level by
moving the nodes in the direction of the forces.

Nodes are randomly moved so as to avoid being trapped at a local energy minimum. At the
beginning this is done more vigorously, with random movement being ceased towards the
end in order to stabilize the final layout. The amount of random movement depends on the
“temperature”, which is controlled by a temperature scheme.

aiSee also supports the concept of local temperatures for a node. The temperature takes the
local situation of the graph into account (see energetic graph attribute, p. 56) and regulates
how much and how often a node is randomly moved.

The force-directed placement algorithm consists of four phases:
o Initialization phase
e First iteration phase
e Optional second iteration phase
¢ Final improvement phase

The two iteration phases are conceptionally the same. They simply sequentially simulate the two
magnetic fields acting on the system. The second iteration phase is omitted if there is only one
magnetic field.

One iteration phase consists of a loop of iteration steps that are executed until the global tempera-
ture value has fallen below a specified threshold value or until a maximum number of iterations is
reached.

In each iteration step the new impulses of the nodes (force directions) are calculated, the nodes
moved to their new positions according to the impulses, and the global temperature adjusted.

In the final improvement phase, the node positions can be rastered. This is done by moving a node
to its closest raster point after each iteration step.

Finally the minimum x and y coordinates are calculated and the entire layout is moved so that
the minimum coordinates are just zero. This step is necessary because all nodes move during the
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iteration phase, meaning they could have all moved away from the origin of the coordinate system.
Finally the start and end points of the edges are calculated.

For more details, see [Sa96].

6.4 Hierarchical Layout

6.4.1 Rank Assignment

After folding, all the visible nodes are determined. If all the visible nodes have been specified by
the user using valid coordinates, the graph is drawn immediately. However, if the coordinates of
at least one node are missing, an appropriate layout has to be calculated. The first pass places the
nodes in discrete ranks. All nodes of the same rank appear at the same vertical position.

There are many possibilities for assigning rank. The normal method is to calculate a spanning
tree by determining the strongly connected components of the graph. All edges should be oriented
top-down. A heuristic tries to find a minimum set of edges that cannot be oriented top-down.

A faster method is to calculate the spanning tree of a graph by depth first search (DFS). However,
the order in which the nodes are visited has a substantial influence on the layout. The initial order
of the nodes is the order given by the graph specification. aiSee offers various versions of such
methods:

o dfs:
Calculates the spanning tree by one single DFS traversal. This is the fastest method, but the
quality of the result might be poor for some graphs.

e maxdepth:
Calculates the spanning tree by DFS using the initial order and the reverted initial order,
followed by choosing the deepest spanning tree. This results in more levels, i.e. the graph is
larger in the y direction.

e mindepth:
Takes the flatter spanning tree of both DFS’s. This results in fewer levels, or more nodes at
the same levels, meaning the graph is larger in the x direction.

e maxdepthslow, mindepthslow:
Whereas the above algorithms are fast heuristics for increasing or decreasing the depth of
the layout, maxdepthslow and mindepthslow actually calculate a good order so as to obtain
a maximum or minimum spanning tree. However, they pose one disadvantage: they are
rather slow. Warning: A minimum spanning tree does not necessarily mean that the depth
of the layout is minimal. However, good heuristics involves obtaining a flat layout (see the
examples on p. 40).

e maxdegree, mindegree, maxindegree, minindegree
maxoutdegree, minoutdegree:
These algorithms combine DFS with node sorting. The sorting criteria are the number of
incoming edges, the number of outgoing edges, and the number of edges all at the same
node. Node sorting may have various effects and can sometimes be used as a fast alternative
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to maxdepthslow or mindepthslow.

minbackward:

Instead of calculating strongly connected components, aiSee can also perform topological
sorting to assign ranks to nodes. This is much faster, however it requires that the graph be
acyclic.

tree:

This method is very fast, however it can’t be used unless the graph is a forest of downward
laid-out trees. A downward laid-out tree has the following structure: Each node at rank / has
at most one adjacent edge coming from a node of an upper rank k£ < [. A node may have
edges pointing to nodes at the same level and edges coming from nodes of lower ranks k > [.
The direction of the edges may be arbitrary, but the picture of the layout (if the arrow heads
are ignored) has to be a tree (see Figure 6.1). The assignment of ranks is done by DFS. Then,
the graph is checked to determine whether it is a forest of downward laid-out trees. If this
is not the case, the standard layout is used as a fallback solution. Crossing reduction (see
next section) is not necessary for downward laid-out trees, meaning a very fast positioning
algorithm can be used.

Structurally this is not a tree (e.g.

many edges point to node D). Structurally this is a tree, however the

However, the layout is tree-shaped, layout is not a "downward laid-out tree".
thus it is a "downward laid-out tree".

Figure 6.1: Downward Laid-out Trees and Structural Trees

A further possibility for influencing the layout is edge priority. Higher priority edges are preferable
when calculating the spanning tree. After partitioning, a fine-tuning phase tries to improve the
ranks in order to avoid very long edges.
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6.4.2 Crossing Reduction

This pass calculates a good order of the nodes within levels ao as to avoid edge crossings. The first
step is to separate connected components of the graph and to handle each component separately.

The crossing reduction algorithm calculates the weights of the nodes in keeping with the possible
crossings to the left and the right, and reorders the nodes of a level according to these weights.
The ordering of nodes within one level influences the weights of the adjacent levels, consequently
this is performed iteratively until a user-defined maximum is reached or no more improvements
are recognized. This is phase 1 of the crossing reduction.

If the weights of some nodes are equal a permutation of these nodes is tried. Sometimes a per-
mutation enables crossings to be reduced even further (optional phase 2 of crossing reduction).

There are four possibilities to calculate weights for crossing heuristics. The default weights are
barycenter weights [STM81], while mediancenter weights [GNV88] are sometimes more appro-
priate, especially if the average degree (number of edges) of nodes is small. barymedian weights
are the combination of barycenter and mediancenter, where barycenter is considered first and me-
diancenter is only used for nodes whose barycenter weights are equal. Conversely, medianbary
weights are the combination of barycenter and mediancenter, where mediancenter is considered
first. The weights can be selected interactively in the Layout dialog box, or statically in the GDL
specification. See graph attribute crossing_weight (p. 55).

However, the final result needn’t necessarily be optimal as crossing reduction is only a heuristic.

Finally, a local optimization phase tries to improve the layout by exchanging directly neighbored
nodes. See graph attribute crossing_optimization (p. 54)

6.4.3 Coordinate Calculation

Coordinate calculation follows after partitioning nodes into levels and ordering the nodes within
the levels. Nodes can be aligned at the bottom or at the top of a level or centered at a level, with
there being a minimum distance between levels (yspace). This influences the y coordinates. The x
coordinate has to be calculated such that there is a minimum distance between nodes (xspace) and
a minimum distance between the bend points of edges (xIspace). Furthermore, the layout should
be balanced such that the edges are short and straight.

This achieved by using a special method for downward laid-out trees or performing two general
iteration phases: The first phase simulates a physical pendulum, the nodes being the balls and the
edges the strings. The balls hanging on the strings swing to and fro, i.e. the nodes move within
their level and influence the neighboring nodes until the layout is sparse enough and each node has
sufficient space to be favorably positioned.

Next the nodes are centered with respect to their edges. This phase simulates a rubberband net-
work: The edges pull on a node with a power proportional to their length, the result being that the
node moves to a position such that the sum of the forces of its edges is zero. Then, the length of
the edges is balanced.

An optional fine-tuning phase tries to recognize long edges and draws them as vertical long line
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segments. This is useful for the orthogonal layout methods.

Unfortunately, both physical simulations needn’t be convergent, meaning they may be iterated
infinitely often without resulting in a stable layout. However, these cases are seldom. The number
of iterations is restricted in order to prevent infinite execution, the t message indicating that a
timeout has occurred.

6.4.4 Edge Bending

If a graph contains nodes of different sizes, an edge starting at a very small node may be drawn
through a neighbored large node. This situation is avoided by bending edges at certain points. In
addition, if an orthogonal layout method is selected, the edges are bent so that only orthogonal line
segments exist.

6.5 Drawing

Finally, the graph is drawn in a window or exported to a file. Edges can be drawn as polygon
segments or splines, however spline drawing is slower (indicated by the d message).

Export into PostScript, SVG, or bitmap formats (BMP, PNG, etc. ) is also possible.
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mainwindow, 12
aiSee
virtual window, 76

aiSee, 7
AISEEFONTS, 58, 79, 87, 92
AISEEICONS, 60, 79, 91
alert, 94
amax, 52
anchor, 85, 95
animation, 97
arrow_mode, 52
arrowcolor, 85
arrowsize, 85
arrowstyle, 85
attr-port-sharing, 66
attraction, 52
attribute format, 32
auxilliaries, 24

backarrowcolor, 85
backarrowsize, 85
backarrowstyle, 85
backedge, 30
backspace, 95

bary, 28, 55, 105
barycenter, 55, 105
barymedian, 55, 105
beep, 94

bend point, 31, 105, 106
bending reduction, 28
bentnearedge, 31
bitmap, 101, 106
bmax, 28, 52

bold, 94
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6.5 Drawing

border, 53
bordercolor, 53, 78
borderstyle, 53, 78
borderwidth, 53, 78
bottom, 66
bottom__to__top, 64, 66
box, 21, 69, 82

Box Neighbors..., 21
Box Region..., 21
Box Subgraph, 21
boxed, 70

center, 60, 73, 83
character set, 94
circle, 69, 82
circular, 64
class, 86
classname, 53
cluster, 21
clustered, 70
cmax, 28, 54
cmin, 54
color, 90, 95

entry, 90

index, 90

map, 90
color, 54, 78, 86
colorentry, 54
connected component, 105
continuous, 53, 78, 87
control character, 94
coordinate, 105
coordinates, 103
crossing, 105
crossing phasel, 105
crossing reduction, 28, 105
crossing_optimization, 28, 54
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crossing_phase2, 28, 55, 105
crossing_weight, 28, 55, 105
cycle, 30

dashed, 53, 78, 88

depth first search, 103

dfs, 28, 62, 103
dirty_edge_labels, 55
display_edge_labels, 55
dotted, 53, 78, 88

double, 53, 78, 88
downward laid-out tree, 104

edge
back, 30
bent near, 31
left bent near, 32
left near, 31
near, 31
ordinary, 30
right bent near, 32
right near, 31
edge format, 30
edge priority, 104
edge style
continuous, 87
dashed, 88
dotted, 88
double, 88
invisible, 88
solid, 88
triple, 88
edges, 56
ellipse, 69, 82
energetic
attraction, 56
border, 56
crossing, 56
gravity, 56
overlapping, 56
repulsion, 56
energetic, 56
equal_y_dist, 57
Exclusive, 22
exclusive, 71

fast mode, 28
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fast_icons, 57
fdmax, 57
File, 16
fine-tuning phase, 104
finetuning, 57
fixed, 52
focus, 57, 78
Fold Box, 20
Fold Subgraph, 20
folded, 71
Folding, 17
folding, 20, 101
following edges, 14
fontname, 58, 78, 87
forcedir, 63
format
attribute, 32
back edge, 30
bent near edge, 31
edge, 30
graph, 29
near edge, 31
node, 30
ordinary edge, 30
region, 33
formfeed, 95
free, 52
fstraight_phase, 58

GDL, 29

graph format, 29

graph specification, 29
single, 11

gravity, 58

groups of nodes, 20

height, 58, 79

hexagon, 69, 82

hidden, 59

horizontal order, 59, 79, 87

iconcolors, 59
iconfile, 60, 79
icons, 60
ignore_singles, 60
importance, 60, 79
infol, 60, 80



info2, 60, 80

info3, 60, 80
infoname, 61
Information, 80
Information, 61
inport-sharing, 66
inport_sharing, 61
invisible, 61
invisible, 53, 78, 88
invocation, 11
iteration, 28, 105

keyboard commands
folding, 20
reload file, 16
scaling, 15
unfolding, 21, 22

label, 61, 81, 87

level, 81
late_edge_labels, 61
layout phase, 101
layout_downfactor, 63
layout_nearfactor, 63
layout_upfactor, 63
layoutalgorithm, 62
left_justity, 73, 83
left_to_right, 64, 66
leftbentnearedge, 32
leftnearedge, 31

level, 103, 105

level, 64, 95

line, 86
linear_segments, 64
linestyle, 87

loc, 64, 81

local crossing optimization, 105
Iparallelogram, 69, 82

magnetic_field1, 64
magnetic_field2, 64
magnetic_forcel, 65
magnetic_force2, 65
main window, 12
manhattan_edges, 65
margin, 65, 81
maxdegree, 62, 103
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maxdepth, 28, 62, 103
maxdepthslow, 28, 62, 103
maxindegree, 62, 103
maxlevel, 74
maxoutdegree, 62, 103
maxspect, 68

median, 55, 105
medianbary, 55, 105
mediancenter, 55, 105
message character, 28
minbackward, 28, 63, 104
mindegree, 62, 103
mindepth, 28, 62, 103
mindepthslow, 28, 62, 103
minindegree, 62, 103
minoutdegree, 62, 103
moving, 13

navigation, 13
near_edges, 65
nearedge, 31, 95
newline character, 94
node format, 30
node label, 16
node shape
box, 82
circle, 82
ellipse, 82
hexagon, 82
Iparallelogram, 82
rhomb, 82
rparallelogram, 82
trapeze, 83
triangle, 83
uptrapeze, 83
node_alignment, 66
nodes, 65
none, 85
normal, 28, 62

Open..., 16

ordinary edge, 30
orientation, 66
orthogonal, 64
orthogonal layout, 106
outport-sharing, 66
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parsing, 101

pendulum method, 28, 105

pmax, 28, 66

pmin, 66

polar, 64

polcircular, 64
polygon segment, 106
PostScript, 101, 106
Print..., 16

priority, 104
priority, 88
priority_ phase, 67

randomfactor, 67
randomimpulse, 67
randomrounds, 67
rank, 103

region, 33

region format, 33
Reload, 16
repulsion, 68

rhomb, 69, 82
right_justity, 73, 83
right_to_left, 64, 66
rightbentnearedge, 32
rightnearedge, 31
rmax, 68

rmin, 68
rparallelogram, 69, 82
rubberband method, 105

scaling, 15
invisible, 81
scaling, 68, 82
Scrollbar
Positioning, 13
scrolling, 13
shape, 69, 82
shrink, 69, 83
smanhattan_edges, 69
smax, 28, 69
solid, 53, 78, 86, 88
source, 88
spanning tree, 103
specification, 101
speedup, 28
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spline, 28, 106
splinefactor, 70
splines, 70
spreadlevel, 70
starting, 11

state, 70

straight-line phase, 106
straight_phase, 28, 71
stretch, 69, 83

strongly connected component, 103

subgraph, 20
subgraph_label, 71
subgraph_labels, 71
summary node, 22

tabular, 94

target, 88
tempfactor, 71
tempmax, 72
tempmin, 72
tempscheme, 72
temptreshold, 73
textcolor, 73, 83, 88
textmode, 73, 83
thickness, 88

time limit, 28
timeout, 106

title, 73, 83

top, 66
top_to_bottom, 64, 66
trapeze, 69, 83

tree, 28, 63, 104
treefactor, 74
triangle, 69, 83
triple, 53, 78, 88

underline, 94

Unfold and Wrap, 22
Unfold into Box, 22
Unfold into Cluster, 22
Unfold/Unbox, 21, 22
uptrapeze, 69, 83

user action, 24
useractioncmdl, 74
useractionname, 74

vertical_order, 74, 84



virtual window, 76

width, 75, 84
wrapped, 71
wrapping, 21

X, 75

xbase, 75
xlraster, 76
xIspace, 76, 105
xmax, 76
xraster, 76
xspace, 77, 105

y, 75

ybase, 75
ymax, 76
yraster, 76
yspace, 77, 105

113

6.5 Drawing



	Contents
	Introduction
	Overview
	Usage
	Starting aiSee
	Calling aiSee from the Command Line

	Exiting aiSee
	aiSee Window
	Usage Modes
	Navigating Through a Graph
	Keys
	Mouse Pointer
	Scrollbars (Fine-Tuning)
	Panning Mode for Exploring Large Graphs
	Following Edges
	Show Neighbors
	Searching for Nodes

	Scaling the Graph
	Keys

	Markers
	Node Information
	File Operations
	File Selector Dialog Box


	Advanced Usage
	Grouping of graph elements
	Grouping of edges
	Grouping of nodes
	Example
	Subgraph

	Representation of Groups of Nodes
	Folding
	Box
	Cluster
	Wrapping
	Summary Nodes

	Command Line Options
	User Actions
	Communication
	Commands

	Reducing Layout Time

	Graph Description Language (GDL)
	Graph Format
	Node Format
	Edge Format
	Ordinary Edge Format
	Back Edge Format
	Near Edge Format
	Bent Near Edge Format

	Attribute Format
	Default Node and Edge Attributes
	Default Summary Node and Edge Attributes

	Region Format
	Examples of GDL Specifications
	A Cyclic Graph
	Control Flow Graph
	The Effect of the Layout Algorithms
	Tree Layout
	Combination of Features

	Graph Attributes
	Node Attributes
	Edge Attributes
	Colors
	Icons and Additional Fonts
	Icons
	Fonts
	Compatibility with SVG

	Character Set
	Remarks
	GDL's Grammar
	Animation of layout phases (aka smooth transitions)

	Overview of the Layout Phases
	Parsing
	Grouping of Nodes and Edges – Folding Phase
	Force-Directed Layout
	Hierarchical Layout
	Rank Assignment
	Crossing Reduction
	Coordinate Calculation
	Edge Bending

	Drawing
	References
	Index


